Objective: To explore the relationship between peroxisome proliferator activated receptor-gamma (PPARγ) and peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) expression in gastric carcinoma ...Objective: To explore the relationship between peroxisome proliferator activated receptor-gamma (PPARγ) and peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) expression in gastric carcinoma (GC), and analyze their correlations with clinicopathological features and clinical outcomes of patients. Methods:The two-step immunohistochemical method was used to detect the expression of PPARγ and PGC-1 in 179 cases of GC, and 108 cases of matched normal gastric mucosa. Besides, 16 cases of fresh GC specimens and corresponding normal gastric mucosa were detected for PGC-1 expression with Western blotting. Results: The positive rates of PPART and PGC-1 expression were significantly lower in GC (54.75%, 49.16%) than in normal gastric mucosa (70.37%, 71.30%), respectively (P〈0.05). The decreased expression of PGC-1 in GC was confirmed ha our Western blot analysis (P=0.004). PPAR7 and PGC-1 expressions were related to Lauren's types ofGC (P〈0.05). Positive correlation was found between PPART and PGC-1 expression in GC (rk=0.422, P〈0.001). The survival time of PPART negative and positive patients was 36.6±3.0 vs. 38.5_+2.7 months, and no statistical difference was found between the 5-year survival rates of two groups (34.4% vs. 44.1%, P=0.522, log-rank test); the survival time of PGC-1 negative and positive patients was 36.2±2.8 vs. 39.9±2.9 months, while no statistical difference was found between the 5-year survival rates of the two groups (32.0% vs. 48.2%, P=0.462, log-rank test) Conclusions'. Decreased expression of PPARγand PGC-1 in GC was related to the Lauren's classification. Their expressions in GC were positively correlated, indicating that their fimctions in gastric carcinogenesis may be closely related.展开更多
Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via a...Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage elec-tric foot shock for about 1h at 10s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress car-diomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.展开更多
BACKGROUND In degenerative intervertebral disc(IVD),an unfavorable IVD environment leads to increased senescence of nucleus pulposus(NP)-derived mesenchymal stem cells(NPMSCs)and the inability to complete the differen...BACKGROUND In degenerative intervertebral disc(IVD),an unfavorable IVD environment leads to increased senescence of nucleus pulposus(NP)-derived mesenchymal stem cells(NPMSCs)and the inability to complete the differentiation from NPMSCs to NP cells,leading to further aggravation of IVD degeneration(IDD).Urolithin A(UA)has been proven to have obvious effects in delaying cell senescence and resisting oxidative stress.AIM To explore whether UA can alleviate NPMSCs senescence and to elucidate the underlying mechanism.METHODS In vitro,we harvested NPMSCs from rat tails,and divided NPMSCs into four groups:the control group,H2O2 group,H2O2+UA group,and H2O2+UA+SR-18292 group.Senescence-associatedβ-Galactosidase(SA-β-Gal)activity,cell cycle,cell proliferation ability,and the expression of senescence-related and silent information regulator of transcription 1/PPAR gamma coactivator-1α(SIRT1/PGC-1α)pathway-related proteins and mRNA were used to evaluate the protective effects of UA.In vivo,an animal model of IDD was constructed,and Xrays,magnetic resonance imaging,and histological analysis were used to assess whether UA could alleviate IDD in vivo.RESULTS We found that H2O2 can cause NPMSCs senescence changes,such as cell cycle arrest,reduced cell proliferation ability,increased SA-β-Gal activity,and increased expression of senescence-related proteins and mRNA.After UA pretreatment,the abovementioned senescence indicators were significantly alleviated.To further demonstrate the mechanism of UA,we evaluated the mitochondrial membrane potential and the SIRT1/PGC-1αpathway that regulates mitochondrial function.UA protected mitochondrial function and delayed NPMSCs senescence by activating the SIRT1/PGC-1αpathway.In vivo,we found that UA treatment alleviated an animal model of IDD by assessing the disc height index,Pfirrmann grade and the histological score.CONCLUSION In summary,UA could activate the SIRT1/PGC-1αsignaling pathway to protect mitochondrial function and alleviate cell senescence and IDD in vivo and vitro.展开更多
Background:Shensong Yangxin Capsule (SSYX),traditional Chinese medicine,has been used to treat arrhythmias,angina,cardiac remodeling,cardiac fibrosis,and so on,but its effect on cardiac energy metabolism is still n...Background:Shensong Yangxin Capsule (SSYX),traditional Chinese medicine,has been used to treat arrhythmias,angina,cardiac remodeling,cardiac fibrosis,and so on,but its effect on cardiac energy metabolism is still not clear.The objective of this study was to investigate the effects of SSYX on myocardium energy metabolism in angiotensin (Ang) Ⅱ-induced cardiac hypertrophy.Methods:We used 2 μl (10-6 mol/L) AngⅡ to treat neonatal rat cardiomyocytes (NRCMs) for 48 h.Myocardial α-ac tinin staining showed that the myocardial cell volume increased.Expression of the cardiac hypertrophic marker-brain natriuretic peptide (BNP) messenger RNA (mRNA) also increased by real-time polymerase chain reaction (PCR).Therefore,it can be assumed that the model of hypertrophic cardiomyocytes was successfully constructed.Then,NRCMs were treated with 1 μl of different concentrations of SSYX (0.25,0.5,and 1.0 μg/ml) for another 24 h.To explore the time-depend effect of SSYX on energy metabolism,0.5 μg/ml SSYX was added into cells for 0,6,12,24,and 48 h.Mitochondria was assessed by MitoTracker staining and confocal microscopy.mRNA and protein expression of mitochondrial biogenesis-related genes-Peroxisome proliferator-activated receptor-γ coactivator-1 α (PGC-1 α),energy balance key factor -adenosine monophosphate-activated protein kinase (AMPK),fatty acids oxidation factor-camitine palmitoyltransferase-1 (CPT-1),and glucose oxidation factor-glucose transporter-4 (GLUT-4) were measured by PCR and Western blotting analysis.Results:With the increase in the concentration of SSYX (from 0.25 to 1.0 μg/ml),an increased mitochondrial density in Angll-induced cardiomyocytes was found compared to that of those treated with Angll only (0.25 μg/ml,18.3300 ± 0.8895 vs.24.4900 ± 0.9041,t =10.240,P 〈 0.0001;0.5 μg/ml,18.3300 ± 0.8895 vs.25.9800 ± 0.8187,t =12.710,P 〈 0.0001;and 1.0 μg/ml,18.3300 ± 0.8895 vs.24.2900 ± 1.3120,t =9.902,P 〈 0.0001;n =5 per dosage group).SSYX also increased the mRNA and protein expression ofPGC-1α (0.25 μg/ml,0.8892 ± 0.0848 vs.1.0970 ± 0.0994,t =4.319,P =0.0013;0.5 μg/ml,0.8892 ± 0.0848 vs.1.2330 ± 0.0564,t =7.150,P 〈 0.0001;and 1.0 μg/ml,0.8892 ± 0.0848 vs.1.1640 ± 0.0755,t =5.720,P 〈 0.0001;n =5 per dosage group),AMPK (0.25 μg/ml,0.8872 ± 0.0779 vs.1.1500 ± 0.0507,t =7.239,P 〈 0.0001;0.5 μg/ml,0.8872 ± 0.0779 vs.1.2280 ± 0.0623,t =9.379,P 〈 0.0001;and 1.0 μg/ml,0.8872 ± 0.0779 vs.1.3020 ± 0.0450,t =11.400,P 〈 0.0001;n =5 per dosage group),CPT-1 (1.0 μg/ml,0.7348 ± 0.0594 vs.0.9880 ± 0.0851,t =4.994,P =0.0007,n =5),and GLUT-4 (0.5 μg/ml,1.5640 ± 0.0599 vs.1.7720 ± 0.0660,t =3.783,P =0.0117;1.0 μg/ml,1.5640 ± 0.0599 vs.2.0490 ± 0.1280,t =8.808,P 〈 0.0001;n =5 per dosage group).The effect became more obvious with the increasing concentration of SSYX.When 0.5 μg/ml SSYX was added into cells for 0,6,12,24,and 48 h,the expression of AMPK (6 h,14.6100 ± 0.6205 vs.16.5200 ± 0.7450,t =3.456,P =0.0250;12 h,14.6100 ± 0.6205 vs.18.3200 ± 0.9965,t =6.720,P 〈 0.0001;24 h,14.6100 ± 0.6205 vs.21.8800 ± 0.8208,t =13.160,P 〈 0.0001;and 48 h,14.6100 ± 0.6205 vs.23.7400 ± 1.0970,t =16.530,P 〈 0.0001;n =5 per dosage group),PGC-1α (12 h,11.4700 ± 0.7252 vs.16.9000 ± 1.0150,t =7.910,P 〈 0.0001;24 h,11.4700 ± 0.7252 vs.20.8800 ± 1.2340,t =13.710,P 〈 0.0001;and 48 h,11.4700 ± 0.7252 vs.22.0300 ± 1.4180,t =15.390;n =5 per dosage group),CPT-1 (24 h,15.1600 ± 1.0960 vs.18.5800 ± 0.9049,t =6.048,P 〈 0.0001,n =5),and GL UT-4 (6 h,10.2100 ± 0.9485 vs.12.9700 ± 0.8221,t =4.763,P =0.0012;12 h,10.2100± 0.9485 vs.16.9100± 0.8481,t=1 1.590,P〈 0.0001;24 h,10.2100±0.9485 vs.19.0900± 0.9797,t=15.360,P〈 0.0001;and 48 h,10.2100 ± 0.9485 vs.14.1900 ± 0.9611,t =6.877,P 〈 0.0001;n =5 per dosage group) mRNA and protein increased gradually with the prolongation of drug action time.Conclusions:SSYX could increase myocardial energy metabolism in AngⅡ-induced cardiac hypertrophy.Therefore,SSYX might be considered to be an alternative therapeutic remedy for myocardial hypertrophy.展开更多
基金supported by the National Natural Science Foundation of China(No.8107165030973503)the Supporting Project for Climbing Scholars in Liaoning Provincial Universities,China(2009-2012)
文摘Objective: To explore the relationship between peroxisome proliferator activated receptor-gamma (PPARγ) and peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) expression in gastric carcinoma (GC), and analyze their correlations with clinicopathological features and clinical outcomes of patients. Methods:The two-step immunohistochemical method was used to detect the expression of PPARγ and PGC-1 in 179 cases of GC, and 108 cases of matched normal gastric mucosa. Besides, 16 cases of fresh GC specimens and corresponding normal gastric mucosa were detected for PGC-1 expression with Western blotting. Results: The positive rates of PPART and PGC-1 expression were significantly lower in GC (54.75%, 49.16%) than in normal gastric mucosa (70.37%, 71.30%), respectively (P〈0.05). The decreased expression of PGC-1 in GC was confirmed ha our Western blot analysis (P=0.004). PPAR7 and PGC-1 expressions were related to Lauren's types ofGC (P〈0.05). Positive correlation was found between PPART and PGC-1 expression in GC (rk=0.422, P〈0.001). The survival time of PPART negative and positive patients was 36.6±3.0 vs. 38.5_+2.7 months, and no statistical difference was found between the 5-year survival rates of two groups (34.4% vs. 44.1%, P=0.522, log-rank test); the survival time of PGC-1 negative and positive patients was 36.2±2.8 vs. 39.9±2.9 months, while no statistical difference was found between the 5-year survival rates of the two groups (32.0% vs. 48.2%, P=0.462, log-rank test) Conclusions'. Decreased expression of PPARγand PGC-1 in GC was related to the Lauren's classification. Their expressions in GC were positively correlated, indicating that their fimctions in gastric carcinogenesis may be closely related.
基金supported by a grant from the National Natural Science Foundation of China(No.81172898)
文摘Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage elec-tric foot shock for about 1h at 10s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress car-diomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.
基金National Natural Science Foundation of China,No.81972136Young Medical Scholars Major Program of Jiangsu Province,No.QNRC2016342+1 种基金Key Funding Project of Maternal and Child Health Research of Jiangsu Province,No.F201801and Highlevel Health Professionals"Six projects"Top-notch Talent Research Program of Jiangsu Province,No.LGY2019035.
文摘BACKGROUND In degenerative intervertebral disc(IVD),an unfavorable IVD environment leads to increased senescence of nucleus pulposus(NP)-derived mesenchymal stem cells(NPMSCs)and the inability to complete the differentiation from NPMSCs to NP cells,leading to further aggravation of IVD degeneration(IDD).Urolithin A(UA)has been proven to have obvious effects in delaying cell senescence and resisting oxidative stress.AIM To explore whether UA can alleviate NPMSCs senescence and to elucidate the underlying mechanism.METHODS In vitro,we harvested NPMSCs from rat tails,and divided NPMSCs into four groups:the control group,H2O2 group,H2O2+UA group,and H2O2+UA+SR-18292 group.Senescence-associatedβ-Galactosidase(SA-β-Gal)activity,cell cycle,cell proliferation ability,and the expression of senescence-related and silent information regulator of transcription 1/PPAR gamma coactivator-1α(SIRT1/PGC-1α)pathway-related proteins and mRNA were used to evaluate the protective effects of UA.In vivo,an animal model of IDD was constructed,and Xrays,magnetic resonance imaging,and histological analysis were used to assess whether UA could alleviate IDD in vivo.RESULTS We found that H2O2 can cause NPMSCs senescence changes,such as cell cycle arrest,reduced cell proliferation ability,increased SA-β-Gal activity,and increased expression of senescence-related proteins and mRNA.After UA pretreatment,the abovementioned senescence indicators were significantly alleviated.To further demonstrate the mechanism of UA,we evaluated the mitochondrial membrane potential and the SIRT1/PGC-1αpathway that regulates mitochondrial function.UA protected mitochondrial function and delayed NPMSCs senescence by activating the SIRT1/PGC-1αpathway.In vivo,we found that UA treatment alleviated an animal model of IDD by assessing the disc height index,Pfirrmann grade and the histological score.CONCLUSION In summary,UA could activate the SIRT1/PGC-1αsignaling pathway to protect mitochondrial function and alleviate cell senescence and IDD in vivo and vitro.
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 81670363).
文摘Background:Shensong Yangxin Capsule (SSYX),traditional Chinese medicine,has been used to treat arrhythmias,angina,cardiac remodeling,cardiac fibrosis,and so on,but its effect on cardiac energy metabolism is still not clear.The objective of this study was to investigate the effects of SSYX on myocardium energy metabolism in angiotensin (Ang) Ⅱ-induced cardiac hypertrophy.Methods:We used 2 μl (10-6 mol/L) AngⅡ to treat neonatal rat cardiomyocytes (NRCMs) for 48 h.Myocardial α-ac tinin staining showed that the myocardial cell volume increased.Expression of the cardiac hypertrophic marker-brain natriuretic peptide (BNP) messenger RNA (mRNA) also increased by real-time polymerase chain reaction (PCR).Therefore,it can be assumed that the model of hypertrophic cardiomyocytes was successfully constructed.Then,NRCMs were treated with 1 μl of different concentrations of SSYX (0.25,0.5,and 1.0 μg/ml) for another 24 h.To explore the time-depend effect of SSYX on energy metabolism,0.5 μg/ml SSYX was added into cells for 0,6,12,24,and 48 h.Mitochondria was assessed by MitoTracker staining and confocal microscopy.mRNA and protein expression of mitochondrial biogenesis-related genes-Peroxisome proliferator-activated receptor-γ coactivator-1 α (PGC-1 α),energy balance key factor -adenosine monophosphate-activated protein kinase (AMPK),fatty acids oxidation factor-camitine palmitoyltransferase-1 (CPT-1),and glucose oxidation factor-glucose transporter-4 (GLUT-4) were measured by PCR and Western blotting analysis.Results:With the increase in the concentration of SSYX (from 0.25 to 1.0 μg/ml),an increased mitochondrial density in Angll-induced cardiomyocytes was found compared to that of those treated with Angll only (0.25 μg/ml,18.3300 ± 0.8895 vs.24.4900 ± 0.9041,t =10.240,P 〈 0.0001;0.5 μg/ml,18.3300 ± 0.8895 vs.25.9800 ± 0.8187,t =12.710,P 〈 0.0001;and 1.0 μg/ml,18.3300 ± 0.8895 vs.24.2900 ± 1.3120,t =9.902,P 〈 0.0001;n =5 per dosage group).SSYX also increased the mRNA and protein expression ofPGC-1α (0.25 μg/ml,0.8892 ± 0.0848 vs.1.0970 ± 0.0994,t =4.319,P =0.0013;0.5 μg/ml,0.8892 ± 0.0848 vs.1.2330 ± 0.0564,t =7.150,P 〈 0.0001;and 1.0 μg/ml,0.8892 ± 0.0848 vs.1.1640 ± 0.0755,t =5.720,P 〈 0.0001;n =5 per dosage group),AMPK (0.25 μg/ml,0.8872 ± 0.0779 vs.1.1500 ± 0.0507,t =7.239,P 〈 0.0001;0.5 μg/ml,0.8872 ± 0.0779 vs.1.2280 ± 0.0623,t =9.379,P 〈 0.0001;and 1.0 μg/ml,0.8872 ± 0.0779 vs.1.3020 ± 0.0450,t =11.400,P 〈 0.0001;n =5 per dosage group),CPT-1 (1.0 μg/ml,0.7348 ± 0.0594 vs.0.9880 ± 0.0851,t =4.994,P =0.0007,n =5),and GLUT-4 (0.5 μg/ml,1.5640 ± 0.0599 vs.1.7720 ± 0.0660,t =3.783,P =0.0117;1.0 μg/ml,1.5640 ± 0.0599 vs.2.0490 ± 0.1280,t =8.808,P 〈 0.0001;n =5 per dosage group).The effect became more obvious with the increasing concentration of SSYX.When 0.5 μg/ml SSYX was added into cells for 0,6,12,24,and 48 h,the expression of AMPK (6 h,14.6100 ± 0.6205 vs.16.5200 ± 0.7450,t =3.456,P =0.0250;12 h,14.6100 ± 0.6205 vs.18.3200 ± 0.9965,t =6.720,P 〈 0.0001;24 h,14.6100 ± 0.6205 vs.21.8800 ± 0.8208,t =13.160,P 〈 0.0001;and 48 h,14.6100 ± 0.6205 vs.23.7400 ± 1.0970,t =16.530,P 〈 0.0001;n =5 per dosage group),PGC-1α (12 h,11.4700 ± 0.7252 vs.16.9000 ± 1.0150,t =7.910,P 〈 0.0001;24 h,11.4700 ± 0.7252 vs.20.8800 ± 1.2340,t =13.710,P 〈 0.0001;and 48 h,11.4700 ± 0.7252 vs.22.0300 ± 1.4180,t =15.390;n =5 per dosage group),CPT-1 (24 h,15.1600 ± 1.0960 vs.18.5800 ± 0.9049,t =6.048,P 〈 0.0001,n =5),and GL UT-4 (6 h,10.2100 ± 0.9485 vs.12.9700 ± 0.8221,t =4.763,P =0.0012;12 h,10.2100± 0.9485 vs.16.9100± 0.8481,t=1 1.590,P〈 0.0001;24 h,10.2100±0.9485 vs.19.0900± 0.9797,t=15.360,P〈 0.0001;and 48 h,10.2100 ± 0.9485 vs.14.1900 ± 0.9611,t =6.877,P 〈 0.0001;n =5 per dosage group) mRNA and protein increased gradually with the prolongation of drug action time.Conclusions:SSYX could increase myocardial energy metabolism in AngⅡ-induced cardiac hypertrophy.Therefore,SSYX might be considered to be an alternative therapeutic remedy for myocardial hypertrophy.