This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCC SRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-ocean coupled general ...This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCC SRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-ocean coupled general circulation model. In the last three decades of the 21st century, the global warming enlarges the land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation to he strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increases significantly in North China. It is suggested that the East Asian rainy area would expand northward to North China in the last three decades of the 21st century. In addition, the North China precipitation would increase significantly in September. In July, August, and September, the interannual variability of the precipitation enlarges evidently over North China, implying a risk of flooding in the future.展开更多
The PRECIS,a regional climate model system developed at the UK Met Office Hadley Cen- tre for Climate Prediction and Research,which is nested in one-way mode within the HadAM3P,a higher-resolution version of the atmos...The PRECIS,a regional climate model system developed at the UK Met Office Hadley Cen- tre for Climate Prediction and Research,which is nested in one-way mode within the HadAM3P,a higher-resolution version of the atmospheric com- ponent of the Hadley Centre climate model HadCM3,is employed to simulate the baseline (1961—1990) climate for evaluation of model’s capacity of simu- lating present climate and analyze the future climate change responses in the time-slice of 2071—2100 (2080s) under SRES B2 scenario over China relative to baseline average. It is indicated from the com- parison of the simulated baseline climate with in situ observation that PRECIS can simulate the local dis- tribution characteristics of surface air temperature over China quite well; generally speaking,the simu- lation for precipitation in the north of China and in winter is better than in the south of China and in summer,respectively; the simulation of precipitation in summer is sensitive to topography,and the simu- lated precipitation values are lower than observations over southeast coastal areas. It is shown from the analyses on the simulated climate change responses in 2080s under SRES B2 scenario relative to base- line that there would be an obvious surface air tem- perature increase in the north of China relative to that in the south of China,and especially in Northwest China and Northeast China,the amplitude ofsummer mean surface air temperature increments could reach 5℃; there would be an overall increase of the simulated precipitation in 2080s under SRES B2 scenario over most areas of China,while there would be significant precipitation decreases in South China in winter; there would be obvious precipitation decreases in Northeast China and North China in summer with high surface air temperature increase. However,it presents an obvious precipitation in- crease over the middle and lower reaches of the Yangtze River in summer.展开更多
The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand ...The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand and predict climate variability and climate change not only in Asia but also globally. In order to diagnose the impacts of future anthropogenic emissions on monsoon climates, a coupled general circulation model of the atmosphere and the ocean has been used at the Max-Planck-Institute for Meteorology. In addition to carbon dioxide, the major well mixed greenhouse gases such as methane, nitrous oxide, several chlorofluorocarbons, and CFC substitute gases are prescribed as a function of time. The sulfur cycle is simulated interactively, and both the direct aerosol effect and the indirect cloud albedo effect are considered. Furthermore, changes in tropospheric ozone have been pre-calculated with a chemical transport model and prescribed as a function of time and space in the climate simulations. Concentrations of greenhouse gases and anthropogenic emissions of sulfur dioxide are prescribed according to observations (1860-1990) and projected into the future (1990-2100) according to the Scenarios A2 and B2 in Special Report on Emissions Scenarios (SRES, Nakcenovic et al., 2000) developed by the Intergovernmental Panel on Climate Change (IPCC). It is found that the Indian summer monsoon is enhanced in the scenarios in terms of both mean precipitation and interannual variability. An increase in precipitation is simulated for northern China but a decrease for the southern part. Furthermore, the simulated future increase in monsoon variability seems to be linked to enhanced ENSO variability towards the end of the scenario integrations.展开更多
In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to inv...In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.展开更多
Based on the prediction results of over twenty new climate models provided by Intergovernmental Panel on Climate Change(IPCC) ,the climate change trends in Yangtze-Huaihe region during 2011-2100 were analyzed under th...Based on the prediction results of over twenty new climate models provided by Intergovernmental Panel on Climate Change(IPCC) ,the climate change trends in Yangtze-Huaihe region during 2011-2100 were analyzed under the SRES A1B scenario. The results showed that annual mean temperature in Yangtze-Huaihe region would go up gradually under the background of global warming,and temperature increase rose from southeast to northwest,while annual average temperature would increase by 3.3 ℃ in the late 20th century. Meanwhile,annual average precipitation would rise persistently,and precipitation increase would go up with the increase of latitude and the lapse of time,being obviously strengthened after 2041.展开更多
Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, fiv...Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, five indicators (rainstorm days, maximum 3-day precipitation, elevation, gradient and distance from river or lake) were selected to project the spatial patterns of flood hazard over Yangtze River Basin for the baseline period (1961– 1990) and future (2011–2100) under SRES B2 scenario. The results showed the mean annual rainstorm days over the basin by the near-term, mid-term and long-term would increase from 3.9 days to 4.7, 4.9 and 5.1 days, and the mean annual maximum 3-day precipitation from 122 mm to 143, 146 and 149 mm, respectively. The flood hazard of the basin would become more severe, especially in the middle and lower reaches. Flood hazard grade 5 by the nearterm, mid-term and long-term would extend from 10.99% to 25.46, 28.14 and 29.75%, respectively.展开更多
The air temperature and precipitation in Weifang during 2021 -2050 were simulated by using the regional climate mode PRECIS. The trend of climate change was analyzed by using 5-year moving average and linear trend est...The air temperature and precipitation in Weifang during 2021 -2050 were simulated by using the regional climate mode PRECIS. The trend of climate change was analyzed by using 5-year moving average and linear trend estimation. The results showed that in the future, the mean, maximum and minimum temperatures in Weifang all would rise, and annual precipitation would increase. In addition, both high temperature days and rainstorm days would increase.展开更多
随着全球变暖,应对高温热浪事件是未来现代化城市面临的难题之一。本文利用全球模式—Had AM3p提供的3组不同边界场和初始场驱动区域气候模式系统PRECIS的输出结果,模拟未来情景下中国区域性高温热浪事件发生频率、强度及持续时间的变...随着全球变暖,应对高温热浪事件是未来现代化城市面临的难题之一。本文利用全球模式—Had AM3p提供的3组不同边界场和初始场驱动区域气候模式系统PRECIS的输出结果,模拟未来情景下中国区域性高温热浪事件发生频率、强度及持续时间的变化趋势。结果表明:全球PRECIS对基准时段(1961—1990年)的高温热浪事件的发生的频率、强度和持续时间及对应的大气环流特征具有较强的模拟能力。相对于基准时段,未来情景下未来时段(2071—2100年)中国各地区的高温热浪事件的强度增加,发生频率增幅超过100%,且持续时间增加30%以上。此外,观测资料和模拟结果均表明武汉和哈尔滨地区的高温热浪与500 h Pa高度场的正距平密切相关。而未来情景下,武汉和哈尔滨地区500 h Pa高度场的正距平呈增加的趋势,表明这些地区未来可能出现危害更严重的高温热浪事件。展开更多
利用区域气候模式(PRECIS),模拟生成A2情景下广西冬季气温和降水气候情景数据,经模型订正后,应用迈阿密模型(Miami Model)和桑斯韦特纪念模型(Thornthwait Montreal Model)估算基于广西冬季平均温度、降水量的作物生产量和平均蒸散量的...利用区域气候模式(PRECIS),模拟生成A2情景下广西冬季气温和降水气候情景数据,经模型订正后,应用迈阿密模型(Miami Model)和桑斯韦特纪念模型(Thornthwait Montreal Model)估算基于广西冬季平均温度、降水量的作物生产量和平均蒸散量的作物气候生产力,预估未来广西冬季农业气候生产潜力的时空变化特征。结果表明:基于未来广西冬季平均温度估算的作物生产潜力随时间呈增长趋势,具有南高北低的纬向空间分布特征;基于冬季平均降水量估算的作物生产力和蒸散量估算的作物气候生产潜力随时间推移而减少,呈现东多西少的经向空间分布特征。未来广西的冬季热量资源良好,但是受降水限制,基于平均蒸散量估算的广西冬季作物气候生产潜力下降,使得广西冬季农业气候生产潜力下降的趋势明显,表明降水量是广西冬季农业气候生产潜力的决定性驱动因子。展开更多
采用了DSSAT作物模式和区域气候模式相连接,模拟分析了A2和B2气候变化情景对中国主要地区灌溉水稻产量的影响。气候变化情景采用了IPCC发布的SRES(Special Report on Emissions Scenarios)系列的最新温室气体排放情景,气候情景值采用区...采用了DSSAT作物模式和区域气候模式相连接,模拟分析了A2和B2气候变化情景对中国主要地区灌溉水稻产量的影响。气候变化情景采用了IPCC发布的SRES(Special Report on Emissions Scenarios)系列的最新温室气体排放情景,气候情景值采用区域气候模式PRECIS(Provide Regional Climates for Impact Studies)的模拟值。通过研究站点水稻对A2和B2增温梯度敏感性的分析表明:温度增加,水稻产量呈下降趋势,随着温度增加,产量下降幅度增大。且在同一增温水平下,在南方热带地区的昆明和海口,产量下降幅度大于其他站点。A2和B2的产量相对于基准年(1961~1990年)的变化分别为:气候变化对不同站点的年代际水稻平均产量表现了正面或负面的影响(A2情景下为2.3%^-10.2%,B2情景下为4.0%^-13.6%),在某一些站点,水稻高产年和低产年的概率明显增加,产量分布趋于两极化。展开更多
研究首先利用1980—2000年黄淮海农业区10个站点的农业数据对CER ES-W heat动态机理作物模型进行详细的验证,然后将CERESW-heat模型与两个全球气候模式(G ISS和H adley)结合,同时考虑到CO2对小麦的直接施肥作用,模拟了黄淮海农业区10个...研究首先利用1980—2000年黄淮海农业区10个站点的农业数据对CER ES-W heat动态机理作物模型进行详细的验证,然后将CERESW-heat模型与两个全球气候模式(G ISS和H adley)结合,同时考虑到CO2对小麦的直接施肥作用,模拟了黄淮海农业区10个站点在IPCC SR ES A 2和B2两个气候情景下雨养和灌溉小麦产量和水分利用的变化趋势。得到如下结论:在不考虑CO2直接肥效的情况下,黄淮海农业区雨养小麦全面减产,空间分布特点是西部减产幅度大,东部减产幅度小;在充分灌溉的情况下,灌溉小麦产量维持了现有水平,但灌溉水量增加。因此,在未来该地区水资源短缺的情况下,如何合理利用有限的水资源将成为黄淮海农业区主要面临的问题。在考虑CO2直接肥效的情况下,雨养和灌溉小麦产量都全面增产,雨养小麦的增产幅度明显偏高,灌溉小麦约增产10%~30%,但CO 2的肥效能否充分实现还需要进一步研究证明。展开更多
基金supported by the Key Project of the Chinese Academy of Sciences(KZCX2-SW-210)the Key Project of the Chinese Academy of Sciences(KZCX2-203)the National Key Programme for Developing Basic Sciences(G1998040904).
文摘This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCC SRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-ocean coupled general circulation model. In the last three decades of the 21st century, the global warming enlarges the land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation to he strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increases significantly in North China. It is suggested that the East Asian rainy area would expand northward to North China in the last three decades of the 21st century. In addition, the North China precipitation would increase significantly in September. In July, August, and September, the interannual variability of the precipitation enlarges evidently over North China, implying a risk of flooding in the future.
文摘The PRECIS,a regional climate model system developed at the UK Met Office Hadley Cen- tre for Climate Prediction and Research,which is nested in one-way mode within the HadAM3P,a higher-resolution version of the atmospheric com- ponent of the Hadley Centre climate model HadCM3,is employed to simulate the baseline (1961—1990) climate for evaluation of model’s capacity of simu- lating present climate and analyze the future climate change responses in the time-slice of 2071—2100 (2080s) under SRES B2 scenario over China relative to baseline average. It is indicated from the com- parison of the simulated baseline climate with in situ observation that PRECIS can simulate the local dis- tribution characteristics of surface air temperature over China quite well; generally speaking,the simu- lation for precipitation in the north of China and in winter is better than in the south of China and in summer,respectively; the simulation of precipitation in summer is sensitive to topography,and the simu- lated precipitation values are lower than observations over southeast coastal areas. It is shown from the analyses on the simulated climate change responses in 2080s under SRES B2 scenario relative to base- line that there would be an obvious surface air tem- perature increase in the north of China relative to that in the south of China,and especially in Northwest China and Northeast China,the amplitude ofsummer mean surface air temperature increments could reach 5℃; there would be an overall increase of the simulated precipitation in 2080s under SRES B2 scenario over most areas of China,while there would be significant precipitation decreases in South China in winter; there would be obvious precipitation decreases in Northeast China and North China in summer with high surface air temperature increase. However,it presents an obvious precipitation in- crease over the middle and lower reaches of the Yangtze River in summer.
文摘The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand and predict climate variability and climate change not only in Asia but also globally. In order to diagnose the impacts of future anthropogenic emissions on monsoon climates, a coupled general circulation model of the atmosphere and the ocean has been used at the Max-Planck-Institute for Meteorology. In addition to carbon dioxide, the major well mixed greenhouse gases such as methane, nitrous oxide, several chlorofluorocarbons, and CFC substitute gases are prescribed as a function of time. The sulfur cycle is simulated interactively, and both the direct aerosol effect and the indirect cloud albedo effect are considered. Furthermore, changes in tropospheric ozone have been pre-calculated with a chemical transport model and prescribed as a function of time and space in the climate simulations. Concentrations of greenhouse gases and anthropogenic emissions of sulfur dioxide are prescribed according to observations (1860-1990) and projected into the future (1990-2100) according to the Scenarios A2 and B2 in Special Report on Emissions Scenarios (SRES, Nakcenovic et al., 2000) developed by the Intergovernmental Panel on Climate Change (IPCC). It is found that the Indian summer monsoon is enhanced in the scenarios in terms of both mean precipitation and interannual variability. An increase in precipitation is simulated for northern China but a decrease for the southern part. Furthermore, the simulated future increase in monsoon variability seems to be linked to enhanced ENSO variability towards the end of the scenario integrations.
基金supported by the Key Project of the Chinese Academy of Sciences(Grant Nos.KZCX2-SW-210 and KZCX2-203)the National Key Programme for Developing Basic Sciences(Grant No.G1998040904)the National Natural Science Foundation of China(Grant No.40105006).
文摘In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.
基金Supported by Research Fund Project of Nanjing University of Information Science & Technology(9922)
文摘Based on the prediction results of over twenty new climate models provided by Intergovernmental Panel on Climate Change(IPCC) ,the climate change trends in Yangtze-Huaihe region during 2011-2100 were analyzed under the SRES A1B scenario. The results showed that annual mean temperature in Yangtze-Huaihe region would go up gradually under the background of global warming,and temperature increase rose from southeast to northwest,while annual average temperature would increase by 3.3 ℃ in the late 20th century. Meanwhile,annual average precipitation would rise persistently,and precipitation increase would go up with the increase of latitude and the lapse of time,being obviously strengthened after 2041.
基金supported by the National Technology R&D Program (Grant nos. 2006BAD20B05 and 2008BAK50B06)
文摘Projection of hazard changes in climate extremes is critical to assessing the potential impacts of climate change on human and natural systems. Using simulations of providing regional climates for impacts studies, five indicators (rainstorm days, maximum 3-day precipitation, elevation, gradient and distance from river or lake) were selected to project the spatial patterns of flood hazard over Yangtze River Basin for the baseline period (1961– 1990) and future (2011–2100) under SRES B2 scenario. The results showed the mean annual rainstorm days over the basin by the near-term, mid-term and long-term would increase from 3.9 days to 4.7, 4.9 and 5.1 days, and the mean annual maximum 3-day precipitation from 122 mm to 143, 146 and 149 mm, respectively. The flood hazard of the basin would become more severe, especially in the middle and lower reaches. Flood hazard grade 5 by the nearterm, mid-term and long-term would extend from 10.99% to 25.46, 28.14 and 29.75%, respectively.
基金Supported by Science Research Item of Weifang Meteorological Bureau,China(2011wfqxkt05)
文摘The air temperature and precipitation in Weifang during 2021 -2050 were simulated by using the regional climate mode PRECIS. The trend of climate change was analyzed by using 5-year moving average and linear trend estimation. The results showed that in the future, the mean, maximum and minimum temperatures in Weifang all would rise, and annual precipitation would increase. In addition, both high temperature days and rainstorm days would increase.
文摘随着全球变暖,应对高温热浪事件是未来现代化城市面临的难题之一。本文利用全球模式—Had AM3p提供的3组不同边界场和初始场驱动区域气候模式系统PRECIS的输出结果,模拟未来情景下中国区域性高温热浪事件发生频率、强度及持续时间的变化趋势。结果表明:全球PRECIS对基准时段(1961—1990年)的高温热浪事件的发生的频率、强度和持续时间及对应的大气环流特征具有较强的模拟能力。相对于基准时段,未来情景下未来时段(2071—2100年)中国各地区的高温热浪事件的强度增加,发生频率增幅超过100%,且持续时间增加30%以上。此外,观测资料和模拟结果均表明武汉和哈尔滨地区的高温热浪与500 h Pa高度场的正距平密切相关。而未来情景下,武汉和哈尔滨地区500 h Pa高度场的正距平呈增加的趋势,表明这些地区未来可能出现危害更严重的高温热浪事件。
文摘利用区域气候模式(PRECIS),模拟生成A2情景下广西冬季气温和降水气候情景数据,经模型订正后,应用迈阿密模型(Miami Model)和桑斯韦特纪念模型(Thornthwait Montreal Model)估算基于广西冬季平均温度、降水量的作物生产量和平均蒸散量的作物气候生产力,预估未来广西冬季农业气候生产潜力的时空变化特征。结果表明:基于未来广西冬季平均温度估算的作物生产潜力随时间呈增长趋势,具有南高北低的纬向空间分布特征;基于冬季平均降水量估算的作物生产力和蒸散量估算的作物气候生产潜力随时间推移而减少,呈现东多西少的经向空间分布特征。未来广西的冬季热量资源良好,但是受降水限制,基于平均蒸散量估算的广西冬季作物气候生产潜力下降,使得广西冬季农业气候生产潜力下降的趋势明显,表明降水量是广西冬季农业气候生产潜力的决定性驱动因子。
文摘采用了DSSAT作物模式和区域气候模式相连接,模拟分析了A2和B2气候变化情景对中国主要地区灌溉水稻产量的影响。气候变化情景采用了IPCC发布的SRES(Special Report on Emissions Scenarios)系列的最新温室气体排放情景,气候情景值采用区域气候模式PRECIS(Provide Regional Climates for Impact Studies)的模拟值。通过研究站点水稻对A2和B2增温梯度敏感性的分析表明:温度增加,水稻产量呈下降趋势,随着温度增加,产量下降幅度增大。且在同一增温水平下,在南方热带地区的昆明和海口,产量下降幅度大于其他站点。A2和B2的产量相对于基准年(1961~1990年)的变化分别为:气候变化对不同站点的年代际水稻平均产量表现了正面或负面的影响(A2情景下为2.3%^-10.2%,B2情景下为4.0%^-13.6%),在某一些站点,水稻高产年和低产年的概率明显增加,产量分布趋于两极化。
文摘研究首先利用1980—2000年黄淮海农业区10个站点的农业数据对CER ES-W heat动态机理作物模型进行详细的验证,然后将CERESW-heat模型与两个全球气候模式(G ISS和H adley)结合,同时考虑到CO2对小麦的直接施肥作用,模拟了黄淮海农业区10个站点在IPCC SR ES A 2和B2两个气候情景下雨养和灌溉小麦产量和水分利用的变化趋势。得到如下结论:在不考虑CO2直接肥效的情况下,黄淮海农业区雨养小麦全面减产,空间分布特点是西部减产幅度大,东部减产幅度小;在充分灌溉的情况下,灌溉小麦产量维持了现有水平,但灌溉水量增加。因此,在未来该地区水资源短缺的情况下,如何合理利用有限的水资源将成为黄淮海农业区主要面临的问题。在考虑CO2直接肥效的情况下,雨养和灌溉小麦产量都全面增产,雨养小麦的增产幅度明显偏高,灌溉小麦约增产10%~30%,但CO 2的肥效能否充分实现还需要进一步研究证明。