Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr...Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.展开更多
In this article, we study numerically a Helmholtz decomposition methodology, based on a formulation of the mathematical model as a saddle-point problem. We use a preconditioned conjugate gradient algorithm, applied to...In this article, we study numerically a Helmholtz decomposition methodology, based on a formulation of the mathematical model as a saddle-point problem. We use a preconditioned conjugate gradient algorithm, applied to an associated operator equation of elliptic type, to solve the problem. To solve the elliptic partial differential equations, we use a second order mixed finite element approximation for discretization. We show, using 2-D synthetic vector fields, that this approach, yields very accurate solutions at a low computational cost compared to traditional methods with the same order of approximation.展开更多
A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special tec...A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.展开更多
The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed...The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.展开更多
The dynamics of wire array Z pinches are greatly affected by the initial state of the wires,which can be preconditioned by a prepulse current.Recent advances in experimental research on preconditioned wire array Z pin...The dynamics of wire array Z pinches are greatly affected by the initial state of the wires,which can be preconditioned by a prepulse current.Recent advances in experimental research on preconditioned wire array Z pinches at Xi’an Jiaotong University are presented in this paper.Single-wire explosion experiments were carried out to check the state of the preconditioning and to obtain the current parameters needed for wire gasification.Double-wire explosion experiments were conducted to investigate the temporal evolution of the density distribution of the two gasified wires.Based on the results of these experiments,a double-pulse Z-pinch facility,Qin-1,in which a 10 kA prepulse current was coupled with the 0.8 MA main current was designed and constructed.Wire arrays of different wire materials,including silver and tungsten,can be preconditioned by the prepulse current to a gaseous state.Implosion of the two preconditioned aluminum wires exhibited no ablation and little trailing mass.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image...Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.展开更多
The preconditioned conjugate gradient deconvolution method combines the realization of sparse deconvolution and the optimal preconditioned conjugate gradient method to invert to reflection coefficients. This method ca...The preconditioned conjugate gradient deconvolution method combines the realization of sparse deconvolution and the optimal preconditioned conjugate gradient method to invert to reflection coefficients. This method can enhance the frequency of seismic data processing and widen the valid frequency bandwidth. Considering the time-varying nature of seismic signals, we replace the constant wavelet with a multi-scale time-varying wavelet during deconvolution. Numerical tests show that this method can obtain good application results.展开更多
In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the ite...In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the iterative solution and the construction principle of the iterative matrix. The authors put forward a new incompletely LU factorizing technique for non-M-matrix and the method of constructing the iterative matrix. This improved PCCG is used to calculate the ill-conditioned problems and large-scale three-dimensional finite element problems, and simultaneously contrasted with other methods. The abnormal phenomenon is analyzed when PCCG is used to solve the system of ill-conditioned equations, ft is shown that the method proposed in this paper is quite effective in solving the system of large-scale finite element equations and the system of ill-conditioned equations.展开更多
In this paper, we propose an improved preconditioned algorithm for the conjugate gradient squared method (improved PCGS) for the solution of linear equations. Further, the logical structures underlying the formation o...In this paper, we propose an improved preconditioned algorithm for the conjugate gradient squared method (improved PCGS) for the solution of linear equations. Further, the logical structures underlying the formation of this preconditioned algorithm are demonstrated via a number of theorems. This improved PCGS algorithm retains some mathematical properties that are associated with the CGS derivation from the bi-conjugate gradient method under a non-preconditioned system. A series of numerical comparisons with the conventional PCGS illustrate the enhanced effectiveness of our improved scheme with a variety of preconditioners. This logical structure underlying the formation of the improved PCGS brings a spillover effect from various bi-Lanczos-type algorithms with minimal residual operations, because these algorithms were constructed by adopting the idea behind the derivation of CGS. These bi-Lanczos-type algorithms are very important because they are often adopted to solve the systems of linear equations that arise from large-scale numerical simulations.展开更多
Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?...Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)展开更多
The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method conv...The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method converges, and the preconditioned method is invalid when the classical iterative method does not converge. The results in corresponding references are improved and perfected.展开更多
To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and invest...To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.展开更多
BACKGROUND Impaired wound healing can be associated with different pathological states.Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide.Mesenchymal stem cells(MSCs)pos...BACKGROUND Impaired wound healing can be associated with different pathological states.Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide.Mesenchymal stem cells(MSCs)possess the ability to regenerate tissues by secreting factors involved in promoting cell migration,proliferation and differentiation,while suppressing immune reactions.Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.AIM To enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.METHODS Human umbilical cord MSCs(hU-MSCs)were isolated and characterized by surface markers,CD105,vimentin and CD90.For preconditioning,hU-MSCs were treated with isorhamnetin after selection of the optimized concentration(5μmol/L)by cytotoxicity analysis.The migration potential of these MSCs was analyzed by the in vitro scratch assay.The healing potential of normal,and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound.Normal,and preconditioned MSCs(IH+MSCs)were transplanted after 72 h of burn injury and observed for 2 wk.Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.RESULTS The scratch assay analysis showed a significant reduction in the scratch area in the case of IH+MSCs compared to the normal untreated MSCs at 24 h,while complete closure of the scratch area was observed at 48 h.Histological analysis showed reduced inflammation,completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH+MSCs.Gene expression analysis was time dependent and more pronounced in the case of IH+MSCs.Interleukin(IL)-1β,IL-6 and Bcl-2 associated X genes showed significant downregulation,while transforming growth factorβ,vascular endothelial growth factor,Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound,showing increased angiogenesis and reduced inflammation and apoptosis.CONCLUSION Preconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation,and improving tissue architecture and wound healing.The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.展开更多
BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from ...BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from normoxic(NC)-MSCs.However,the cardioprotective mechanisms of HP-EVs are not fully understood.AIM To explore the cardioprotective mechanism of EVs derived from HP MSCs.METHODS We evaluated the cardioprotective effects of HP-EVs or NC-EVs from mouse adipose-derived MSCs(ADSCs)following hypoxia in vitro or MI in vivo,in order to improve the survival of cardiomyocytes(CMs)and restore cardiac function.The degree of CM apoptosis in each group was assessed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/PI assays.MicroRNA(miRNA)sequencing was used to investigate the functional RNA diversity between HP-EVs and NC-EVs from mouse ADSCs.The molecular mechanism of EVs in mediating thioredoxin-interacting protein(TXNIP)was verified by the dual-luciferase reporter assay.Co-immunoprecipitation,western blotting,and immunofluorescence were performed to determine if TXNIP is involved in hypoxia-inducible factor-1 alpha(HIF-1α)ubiquitination and degradation via the chromosomal region maintenance-1(CRM-1)-dependent nuclear transport pathway.RESULTS HP-EVs derived from MSCs reduced both infarct size(necrosis area)and apoptotic degree to a greater extent than NC-EVs from CMs subjected to hypoxia in vitro and mice with MI in vivo.Sequencing of EV-associated miRNAs showed the upregulation of 10 miRNAs predicted to bind TXNIP,an oxidative stress-associated protein.We showed miRNA224-5p,the most upregulated miRNA in HP-EVs,directly combined the 3’untranslated region of TXNIP and demonstrated its critical protective role against hypoxia-mediated CM injury.Our results demonstrated that MI triggered TXNIP-mediated HIF-1αubiquitination and degradation in the CRM-1-mediated nuclear transport pathway in CMs,which led to aggravated injury and hypoxia tolerance in CMs in the early stage of MI.CONCLUSION The anti-apoptotic effects of HP-EVs in alleviating MI and the hypoxic conditions of CMs until reperfusion therapy may partly result from EV miR-224-5p targeting TXNIP.展开更多
Anesthetics evoke a stress-response, upregulating heat shock genes. This neuroprotective response to proteotoxic stress represents preconditioning, a process by which neuronal tissue, previously exposed to anesthetics...Anesthetics evoke a stress-response, upregulating heat shock genes. This neuroprotective response to proteotoxic stress represents preconditioning, a process by which neuronal tissue, previously exposed to anesthetics, is protected against future insult. It presumes a sub-lethal injury, affecting protein unfolding. Our hypothesis is: preconditioning evokes molecular events that result in downstream changes that offer a selective advantage in terms of neuronal function. We focused on the neurobehavioral aspects which we neurophenotyped. Larval zebrafish were exposed to trifluoroethanol (TFE), an anesthetic mimetic, and tested for both individual and group behavioral markers of neuronal function. In bright/dark tests, we observed that TFE-exposed larvae spent more time in the dark area (typically an adult-like response) than control larvae. The response of TFE larvae to noise startle was directly opposite to that of controls. TFE larvae swam towards the source of the startle (into the bright zone), whereas control larvae swam away from the source of the startle (into the dark), typical of fear-response. The larvae also exhibited several differences in social behaviors, including synchronized schooling and shoaling behaviors. The TFE-group showed a greater number of synchronized events versus controls. The TFE-group also exhibited more shoaling events compared with controls. While the long-term effects have yet to be determined, these results shed light on the mechanism of anesthetic preconditioning. These complex zebrafish behaviors normally develop with age and therefore represent, in the TFE-exposed group, a pattern of accelerated maturation of neuronal function, which is the neurophenotype attributed to preconditioning.展开更多
A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weis...A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weiss and Smith to the time derivative of the Euler equations,which are discretized using agridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,which may fail to converge for low Mach number simulations.Therefore,the modifications corresponding to the affected terms of preconditioning are mainly addressed.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.The paper ends with the nearly incompressible flow over a multi-element airfoil,which demonstrates the ability of the method presented for treating flows over complicated geometries.展开更多
The grid equations in decomposed domain by parallel computation are soled, and a method of local orthogonalization to solve the large-scaled numerical computation is presented. It constructs preconditioned iteration m...The grid equations in decomposed domain by parallel computation are soled, and a method of local orthogonalization to solve the large-scaled numerical computation is presented. It constructs preconditioned iteration matrix by the combination of predigesting LU decomposition and local orthogonalization, and the convergence of solution is proved. Indicated from the example, this algorithm can increase the rate of computation efficiently and it is quite stable.展开更多
Recently, some authors (Li, Yang and Wu, 2014) studied the parameterized preconditioned HSS (PPHSS) method for solving saddle point problems. In this short note, we further discuss the PPHSS method for solving singula...Recently, some authors (Li, Yang and Wu, 2014) studied the parameterized preconditioned HSS (PPHSS) method for solving saddle point problems. In this short note, we further discuss the PPHSS method for solving singular saddle point problems. We prove the semi-convergence of the PPHSS method under some conditions. Numerical experiments are given to illustrate the efficiency of the method with appropriate parameters.展开更多
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
基金supported by the Natural Science Fund of Fujian Province,No.2020J011058(to JK)the Project of Fujian Provincial Hospital for High-level Hospital Construction,No.2020HSJJ12(to JK)+1 种基金the Fujian Provincial Finance Department Special Fund,No.(2021)848(to FC)the Fujian Provincial Major Scientific and Technological Special Projects on Health,No.2022ZD01008(to FC).
文摘Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
文摘In this article, we study numerically a Helmholtz decomposition methodology, based on a formulation of the mathematical model as a saddle-point problem. We use a preconditioned conjugate gradient algorithm, applied to an associated operator equation of elliptic type, to solve the problem. To solve the elliptic partial differential equations, we use a second order mixed finite element approximation for discretization. We show, using 2-D synthetic vector fields, that this approach, yields very accurate solutions at a low computational cost compared to traditional methods with the same order of approximation.
文摘A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.
基金Project supported by MOE's 2004 New Century Excellent Talent Program (NCET)the Applied Basic Research Foundations of Sichuan Province (No.05JY029-068-2)
文摘The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.
文摘The dynamics of wire array Z pinches are greatly affected by the initial state of the wires,which can be preconditioned by a prepulse current.Recent advances in experimental research on preconditioned wire array Z pinches at Xi’an Jiaotong University are presented in this paper.Single-wire explosion experiments were carried out to check the state of the preconditioning and to obtain the current parameters needed for wire gasification.Double-wire explosion experiments were conducted to investigate the temporal evolution of the density distribution of the two gasified wires.Based on the results of these experiments,a double-pulse Z-pinch facility,Qin-1,in which a 10 kA prepulse current was coupled with the 0.8 MA main current was designed and constructed.Wire arrays of different wire materials,including silver and tungsten,can be preconditioned by the prepulse current to a gaseous state.Implosion of the two preconditioned aluminum wires exhibited no ablation and little trailing mass.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
基金supported by the National Basic Research Program (No.2005CB321702)the National Outstanding Young Scientist Foundation(No. 10525102)the Specialized Research Grant for High Educational Doctoral Program(Nos. 20090211120011 and LZULL200909),Hong Kong RGC grants and HKBU FRGs
文摘Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.
基金This research is sponsored by Key Project of Knowledge Innovation of chinese Academy of Sciences (No. KZCX1-SW-18) and the Precative Project of the Research Institute of Exploration and Development of Daqing Oilfield Co., Ltd.
文摘The preconditioned conjugate gradient deconvolution method combines the realization of sparse deconvolution and the optimal preconditioned conjugate gradient method to invert to reflection coefficients. This method can enhance the frequency of seismic data processing and widen the valid frequency bandwidth. Considering the time-varying nature of seismic signals, we replace the constant wavelet with a multi-scale time-varying wavelet during deconvolution. Numerical tests show that this method can obtain good application results.
文摘In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method (PCCG). The theorems discuss respectively the qualitative property of the iterative solution and the construction principle of the iterative matrix. The authors put forward a new incompletely LU factorizing technique for non-M-matrix and the method of constructing the iterative matrix. This improved PCCG is used to calculate the ill-conditioned problems and large-scale three-dimensional finite element problems, and simultaneously contrasted with other methods. The abnormal phenomenon is analyzed when PCCG is used to solve the system of ill-conditioned equations, ft is shown that the method proposed in this paper is quite effective in solving the system of large-scale finite element equations and the system of ill-conditioned equations.
文摘In this paper, we propose an improved preconditioned algorithm for the conjugate gradient squared method (improved PCGS) for the solution of linear equations. Further, the logical structures underlying the formation of this preconditioned algorithm are demonstrated via a number of theorems. This improved PCGS algorithm retains some mathematical properties that are associated with the CGS derivation from the bi-conjugate gradient method under a non-preconditioned system. A series of numerical comparisons with the conventional PCGS illustrate the enhanced effectiveness of our improved scheme with a variety of preconditioners. This logical structure underlying the formation of the improved PCGS brings a spillover effect from various bi-Lanczos-type algorithms with minimal residual operations, because these algorithms were constructed by adopting the idea behind the derivation of CGS. These bi-Lanczos-type algorithms are very important because they are often adopted to solve the systems of linear equations that arise from large-scale numerical simulations.
文摘Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)
文摘The preconditioned methods for solving linear system are discussed. The convergence rate of accelerated overrelaxation (AOR) method can be enlarged by using the preconditioned method when the classical AOR method converges, and the preconditioned method is invalid when the classical iterative method does not converge. The results in corresponding references are improved and perfected.
文摘To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.
文摘BACKGROUND Impaired wound healing can be associated with different pathological states.Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide.Mesenchymal stem cells(MSCs)possess the ability to regenerate tissues by secreting factors involved in promoting cell migration,proliferation and differentiation,while suppressing immune reactions.Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.AIM To enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.METHODS Human umbilical cord MSCs(hU-MSCs)were isolated and characterized by surface markers,CD105,vimentin and CD90.For preconditioning,hU-MSCs were treated with isorhamnetin after selection of the optimized concentration(5μmol/L)by cytotoxicity analysis.The migration potential of these MSCs was analyzed by the in vitro scratch assay.The healing potential of normal,and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound.Normal,and preconditioned MSCs(IH+MSCs)were transplanted after 72 h of burn injury and observed for 2 wk.Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.RESULTS The scratch assay analysis showed a significant reduction in the scratch area in the case of IH+MSCs compared to the normal untreated MSCs at 24 h,while complete closure of the scratch area was observed at 48 h.Histological analysis showed reduced inflammation,completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH+MSCs.Gene expression analysis was time dependent and more pronounced in the case of IH+MSCs.Interleukin(IL)-1β,IL-6 and Bcl-2 associated X genes showed significant downregulation,while transforming growth factorβ,vascular endothelial growth factor,Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound,showing increased angiogenesis and reduced inflammation and apoptosis.CONCLUSION Preconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation,and improving tissue architecture and wound healing.The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.
基金Supported by National Natural Science Foundation of China,No. 81870264 and No. 81470546the Shanghai Committee of Science and Technology,No. 18411950500+1 种基金the Major Disease Joint Project of Shanghai Health System,No. 2014ZYJB0501Talent Cultivation Project of The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No. JC202005
文摘BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from normoxic(NC)-MSCs.However,the cardioprotective mechanisms of HP-EVs are not fully understood.AIM To explore the cardioprotective mechanism of EVs derived from HP MSCs.METHODS We evaluated the cardioprotective effects of HP-EVs or NC-EVs from mouse adipose-derived MSCs(ADSCs)following hypoxia in vitro or MI in vivo,in order to improve the survival of cardiomyocytes(CMs)and restore cardiac function.The degree of CM apoptosis in each group was assessed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/PI assays.MicroRNA(miRNA)sequencing was used to investigate the functional RNA diversity between HP-EVs and NC-EVs from mouse ADSCs.The molecular mechanism of EVs in mediating thioredoxin-interacting protein(TXNIP)was verified by the dual-luciferase reporter assay.Co-immunoprecipitation,western blotting,and immunofluorescence were performed to determine if TXNIP is involved in hypoxia-inducible factor-1 alpha(HIF-1α)ubiquitination and degradation via the chromosomal region maintenance-1(CRM-1)-dependent nuclear transport pathway.RESULTS HP-EVs derived from MSCs reduced both infarct size(necrosis area)and apoptotic degree to a greater extent than NC-EVs from CMs subjected to hypoxia in vitro and mice with MI in vivo.Sequencing of EV-associated miRNAs showed the upregulation of 10 miRNAs predicted to bind TXNIP,an oxidative stress-associated protein.We showed miRNA224-5p,the most upregulated miRNA in HP-EVs,directly combined the 3’untranslated region of TXNIP and demonstrated its critical protective role against hypoxia-mediated CM injury.Our results demonstrated that MI triggered TXNIP-mediated HIF-1αubiquitination and degradation in the CRM-1-mediated nuclear transport pathway in CMs,which led to aggravated injury and hypoxia tolerance in CMs in the early stage of MI.CONCLUSION The anti-apoptotic effects of HP-EVs in alleviating MI and the hypoxic conditions of CMs until reperfusion therapy may partly result from EV miR-224-5p targeting TXNIP.
文摘Anesthetics evoke a stress-response, upregulating heat shock genes. This neuroprotective response to proteotoxic stress represents preconditioning, a process by which neuronal tissue, previously exposed to anesthetics, is protected against future insult. It presumes a sub-lethal injury, affecting protein unfolding. Our hypothesis is: preconditioning evokes molecular events that result in downstream changes that offer a selective advantage in terms of neuronal function. We focused on the neurobehavioral aspects which we neurophenotyped. Larval zebrafish were exposed to trifluoroethanol (TFE), an anesthetic mimetic, and tested for both individual and group behavioral markers of neuronal function. In bright/dark tests, we observed that TFE-exposed larvae spent more time in the dark area (typically an adult-like response) than control larvae. The response of TFE larvae to noise startle was directly opposite to that of controls. TFE larvae swam towards the source of the startle (into the bright zone), whereas control larvae swam away from the source of the startle (into the dark), typical of fear-response. The larvae also exhibited several differences in social behaviors, including synchronized schooling and shoaling behaviors. The TFE-group showed a greater number of synchronized events versus controls. The TFE-group also exhibited more shoaling events compared with controls. While the long-term effects have yet to be determined, these results shed light on the mechanism of anesthetic preconditioning. These complex zebrafish behaviors normally develop with age and therefore represent, in the TFE-exposed group, a pattern of accelerated maturation of neuronal function, which is the neurophenotype attributed to preconditioning.
基金supported by the National Natural Science Foundation of China(No.11172134)
文摘A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weiss and Smith to the time derivative of the Euler equations,which are discretized using agridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,which may fail to converge for low Mach number simulations.Therefore,the modifications corresponding to the affected terms of preconditioning are mainly addressed.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.The paper ends with the nearly incompressible flow over a multi-element airfoil,which demonstrates the ability of the method presented for treating flows over complicated geometries.
文摘The grid equations in decomposed domain by parallel computation are soled, and a method of local orthogonalization to solve the large-scaled numerical computation is presented. It constructs preconditioned iteration matrix by the combination of predigesting LU decomposition and local orthogonalization, and the convergence of solution is proved. Indicated from the example, this algorithm can increase the rate of computation efficiently and it is quite stable.
文摘Recently, some authors (Li, Yang and Wu, 2014) studied the parameterized preconditioned HSS (PPHSS) method for solving saddle point problems. In this short note, we further discuss the PPHSS method for solving singular saddle point problems. We prove the semi-convergence of the PPHSS method under some conditions. Numerical experiments are given to illustrate the efficiency of the method with appropriate parameters.