It is well known that Hall polynomials as structural coefficients play an important role in the structure of Lie algebras and quantum groups. By using the properties of representation categories of affine quivers, the...It is well known that Hall polynomials as structural coefficients play an important role in the structure of Lie algebras and quantum groups. By using the properties of representation categories of affine quivers, the task of computing Hall polynomials for affine quivers can be reduced to counting the numbers of solutions of some matrix equations. This method has been applied to obtain Hall polynomials for indecomposable representations of quivers of type Am(m≥1)展开更多
文摘It is well known that Hall polynomials as structural coefficients play an important role in the structure of Lie algebras and quantum groups. By using the properties of representation categories of affine quivers, the task of computing Hall polynomials for affine quivers can be reduced to counting the numbers of solutions of some matrix equations. This method has been applied to obtain Hall polynomials for indecomposable representations of quivers of type Am(m≥1)