期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Unique Marine Olenekian-Anisian Boundary Section from South Primorye, Russian Far East 被引量:3
1
作者 Yuri D Zakharov Alexander M Popov Galina I Buryi 《Journal of China University of Geosciences》 SCIE CSCD 2005年第3期219-230,共12页
To show paleontological characteristics of the Olenekian-Anislan boundary beds in the Russian Far East, a review of new data on the Upper Olenekian and Lower Anisian biostratigraphy of South Primorye is given on the b... To show paleontological characteristics of the Olenekian-Anislan boundary beds in the Russian Far East, a review of new data on the Upper Olenekian and Lower Anisian biostratigraphy of South Primorye is given on the basis of five sections: Golyi Cape, Petrovka River, Zhitkov Peninsula, Tchernyschew Bay and Atlasov Cape, using new ammonoid, brachiopod and conodont findings. The most representative ammonoid assemblage at the base of the Anisian was discovered in the Ussuriphyllites amurensis Zone (10.6 m thick) of the Atlasov Cape Section: Parasageceras sp. nov., Prionitidae gen. et sp. nov. , Ussuriphyllites amurensis (Kiparisova) (dominant), Megaphyllites atlasoviensis Zakharov, Leiophyllites praematurus Kiparisova, Leiophyllites sp. , Ussurites sp. , Paradanubites sp. indet., Paracrochordiceras sp. nov., Prohungarites popowi Kiparisova, Arctohungarites primoriensis Zakharov, A. solimani (Toula), Salterites sp. indet. (gigantic shell), and Tropigastrites sublachontanus Zakharov. Conodonts Neospathodus cf. homeri (Bender) were found in the lower part of the Ussuriphyllites amurensis Zone of the Atlasov Cape. The Atlasov Cape seems to be one of the very promising sections of the Russian Far East for detailed investigation of the Olenekian-Anisian boundary. 展开更多
关键词 South primorye Triassic Olenekian-Anisian boundary ammonoid conodont
下载PDF
Early Norian flora from Partizansk River Basin of Primorye, Russia 被引量:1
2
作者 Elena B Volynets Svetlana A Schorokhova Ge Sun 《Global Geology》 2006年第1期1-12,共12页
An early Norian flora from the Partizansk River Basin of Primorye, Far-East of Russia, is described in detail for the first time, in which over 25 taxa are reported. The flora is dominated by cycadoalean, bennettitale... An early Norian flora from the Partizansk River Basin of Primorye, Far-East of Russia, is described in detail for the first time, in which over 25 taxa are reported. The flora is dominated by cycadoalean, bennettitalean and coniferous plants, associated with a lot of ferns and czekanowskialean plants, and with a few ginkgoalean. In floristic characteristics, the flora can be well comparable with Late Triassic Mongugai flora of southwestern Primorye and its neighboring Tianqiaoling flora of eastern Jilin, China, as well with the Yamanoi and Nariwa floras from southwestern Japan. As the plant-bearing strata are sandwiched in the lower Norian marine beds yielding marine fauna, the age of the Partizansk flora is well evidenced as the early Norian. Paleophytogeographically, the flora appears to be in the ecotone of the Medio-Triassic and Arcto-Triassic floristic regions in Eurasia, and indicates probably warm temperate or subtropic vegetation in nature. Four new species are reported in this paper, including Ctenis elegantus sp. nov, Ixostrobus pacificus sp. nov., Elatocladus elegantus sp. nov. and E. prynadae sp. nov. 展开更多
关键词 三叠纪 Norian 植物群 paleophytogeography 俄国的 primorye
下载PDF
Silica-Metal Spherules in Ignimbrites of Southern Primorye,Russia 被引量:2
3
作者 Andrei V Grebennikov 《Journal of Earth Science》 SCIE CAS CSCD 2011年第1期20-31,共12页
A comprehensive mineralogical-geochemical and petrological study of ignimbrites from the Yakut-Gora volcanic depression (Primorye, Far Eastern Russia) revealed a wide distribution of silica-metal spherules ("globu... A comprehensive mineralogical-geochemical and petrological study of ignimbrites from the Yakut-Gora volcanic depression (Primorye, Far Eastern Russia) revealed a wide distribution of silica-metal spherules ("globules") that are typical liquid immiscibility resultant. The metallic portion of a spherule (composition varies from low-carbon iron to cohenite) borders gas pores and is rimmed by symplectite that consists of quartz, magnetite, and silica-potassic glass. This allows us to consider that the whole formation formed through reduction of the enclosing silicate melt. Abundant evidence of high reduction states of ignimbrite melts and the presence of iron carbides suggest an H2-CH4 composition of the fluidal phase in ignimbrite magmas. 展开更多
关键词 spherule native iron IGNIMBRITE TEKTITE primorye Russia.
原文传递
Recovery of Brachiopod and Ammonoid Faunas Following the End-Permian Crisis:Additional Evidence from the Lower Triassic of the Russian Far East and Kazakhstan 被引量:1
4
作者 Yuri D Zakharov Alexander M Popov 《Journal of Earth Science》 SCIE CAS CSCD 2014年第1期1-44,共44页
After the End-Permian mass extinction, ammonoids reached levels of taxonomic diver- sity higher than in the Changhsingian by the Dienerian Substage of the Induan. However, brachiopods exhibit a prolonged delay in reco... After the End-Permian mass extinction, ammonoids reached levels of taxonomic diver- sity higher than in the Changhsingian by the Dienerian Substage of the Induan. However, brachiopods exhibit a prolonged delay in recovery, and their taxonomic diversity had not recovered to Late Permian levels even by the Olenekian. The differential patterns of recovery between these two clades may reflect fundamental differences in physiology and behavior. Brachiopods were benthic organisms that were dependent on specific trophic sources, and their general reduction in size during the Early Triassic may have been a response to a relative paucity of food resources. In contrast, ammonoids were sluggish- nektic organisms that utilized a wider range of trophic sources and that suffered no comparable size decrease during the Early Triassic. Brachiopods may have been at a disadvantage also due to vulner- abilities associated with their larval stage, during which they had to locate a suitable substrate for set- tlement. In contrast, ammonoids had no larval stage and juveniles may have been dispersed widely into favorable habitats. These factors may account for differences in the relative success of ammonoids and brachiopods at high-latitude regions following the End-Permian mass extinction: ammonoids success- fully reeolonized the Boreal region during the Early Triassic whereas brachiopods did not. 展开更多
关键词 Lower Triassic South primorye Kazakhstan BRACHIOPOD ammonoid biotic recovery.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部