This paper provides a review on the diversity techniques of IDMA (Interleave Division Multiple Access) technology in underwater wireless IDMA employs interleavers as the only means in order to distinguish the users. T...This paper provides a review on the diversity techniques of IDMA (Interleave Division Multiple Access) technology in underwater wireless IDMA employs interleavers as the only means in order to distinguish the users. This paper provides a comprehensive study of diversity techniques in IDMA scheme to mitigate the fading issue. In this paper, we compare the different generation diversity techniques in IDMA scheme on computational complexity, bit error rate and memory requirement. Recent advancement in underwater communication is modulation techniques, multiplexing techniques and multiple access techniques. Underwater communication channel is characterized.展开更多
Hybrid Distributed Coordination Function (HDCF),a modified medium access control pro-tocol of IEEE 802.11 standard,is proposed in this paper to support both smart adaptive array anten-nas and normal omni-directional a...Hybrid Distributed Coordination Function (HDCF),a modified medium access control pro-tocol of IEEE 802.11 standard,is proposed in this paper to support both smart adaptive array anten-nas and normal omni-directional antennas simultaneously in one wireless LAN. Omni-directional an-tennas follow the standard Distributed Coordination Function (DCF) and smart antennas follow the Directional DCF (DDCF). The proposed DDCF is based on Hybrid Virtual Carrier Sense (HVCS) mechanism,which includes Omni-directional Request-To-Send/Clear-To-Send (ORTS/OCTS) hand-shake mechanism and directional data transmission. HDCF is compatible with DCF. When a node transmits in a directional beam,the other nodes can multiplex the physical channel. Hence,HDCF supports Space Division Multiple Access (SDMA). Simulation results show that HDCF can support hybrid antennas effectively and provide much higher network throughput and lower delay and jitter than DCF does.展开更多
The growth in wireless technologies applications makes the necessity of providing a reliable communication over wireless networks become obvious.Guaranteeing real time communication in wireless medium poses a signific...The growth in wireless technologies applications makes the necessity of providing a reliable communication over wireless networks become obvious.Guaranteeing real time communication in wireless medium poses a significant challenge due to its poor delivery reliability.In this study,a recovery and redundancy model based on sequential time division multiple access(S-TDMA)for wireless communication is developed.The media access control(MAC)layer of the S-TDMA determines which station should transmit at a given time slot based on channel state of the station.Simulations of the system models were carried out using MATLAB SIMULINK software.SIMULINK blocks from the signal processing and communication block sets were used to model the communication system.The S-TDMA performance is evaluated with total link reliability,system throughput,average probability of correct delivery before deadline and system latency.The evaluation results displayed in graphs when compared with instant retry and drop of frame were found to be reliable in recovering loss packets.展开更多
This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the ...This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.展开更多
Resonant beam communications (RBCom), which adopts oscillating photons between two separate retroreflectors for information transmission, exhibits potential advantages over other types of wireless optical communicatio...Resonant beam communications (RBCom), which adopts oscillating photons between two separate retroreflectors for information transmission, exhibits potential advantages over other types of wireless optical communications (WOC). However, echo interference generated by the modulated beam reflected from the receiver affects the transmission of the desired information. To tackle this challenge, a synchronization-based point-to-point RBCom system is proposed to eliminate the echo interference, and the design for the transmitter and receiver is discussed. Subsequently,the performance of the proposed RBCom is evaluated and compared with that of visible light communications(VLC)and free space optical communications (FOC). Finally, future research directions are outlined and several implementation challenges of RBCom systems are highlighted.展开更多
文摘This paper provides a review on the diversity techniques of IDMA (Interleave Division Multiple Access) technology in underwater wireless IDMA employs interleavers as the only means in order to distinguish the users. This paper provides a comprehensive study of diversity techniques in IDMA scheme to mitigate the fading issue. In this paper, we compare the different generation diversity techniques in IDMA scheme on computational complexity, bit error rate and memory requirement. Recent advancement in underwater communication is modulation techniques, multiplexing techniques and multiple access techniques. Underwater communication channel is characterized.
文摘Hybrid Distributed Coordination Function (HDCF),a modified medium access control pro-tocol of IEEE 802.11 standard,is proposed in this paper to support both smart adaptive array anten-nas and normal omni-directional antennas simultaneously in one wireless LAN. Omni-directional an-tennas follow the standard Distributed Coordination Function (DCF) and smart antennas follow the Directional DCF (DDCF). The proposed DDCF is based on Hybrid Virtual Carrier Sense (HVCS) mechanism,which includes Omni-directional Request-To-Send/Clear-To-Send (ORTS/OCTS) hand-shake mechanism and directional data transmission. HDCF is compatible with DCF. When a node transmits in a directional beam,the other nodes can multiplex the physical channel. Hence,HDCF supports Space Division Multiple Access (SDMA). Simulation results show that HDCF can support hybrid antennas effectively and provide much higher network throughput and lower delay and jitter than DCF does.
文摘The growth in wireless technologies applications makes the necessity of providing a reliable communication over wireless networks become obvious.Guaranteeing real time communication in wireless medium poses a significant challenge due to its poor delivery reliability.In this study,a recovery and redundancy model based on sequential time division multiple access(S-TDMA)for wireless communication is developed.The media access control(MAC)layer of the S-TDMA determines which station should transmit at a given time slot based on channel state of the station.Simulations of the system models were carried out using MATLAB SIMULINK software.SIMULINK blocks from the signal processing and communication block sets were used to model the communication system.The S-TDMA performance is evaluated with total link reliability,system throughput,average probability of correct delivery before deadline and system latency.The evaluation results displayed in graphs when compared with instant retry and drop of frame were found to be reliable in recovering loss packets.
基金Project supported by the UK EPSRC(No.EP/N005597/1)the H2020-MSCA-RISE-2015(No.690750)+1 种基金the National Natural Science Foundation of China(No.61728101)the U.S.National Science Foundation(Nos.CNS-1702808 and ECCS-1647198)
文摘This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.
基金supported in part by the Natural Science Foundation of China under Grant 62341112in part by the Basic Research Project of Hetao Shenzhen-HK S&T Cooperation Zone under Grant HZQBKCZYZ-2021067+3 种基金in part by the Key Project of Shenzhen under Grant JCYJ20220818103006013in part by Shenzhen High-Tech Zone Project under Grant KC2022KCCX0041in part by Guangdong Provincial Key Laboratory of Future Networks of Intelligence under Grant 2022B1212010001in part by Shenzhen Key Laboratory of Big Data and Artificial Intelligence under Grant ZDSYS201707251409055.
文摘Resonant beam communications (RBCom), which adopts oscillating photons between two separate retroreflectors for information transmission, exhibits potential advantages over other types of wireless optical communications (WOC). However, echo interference generated by the modulated beam reflected from the receiver affects the transmission of the desired information. To tackle this challenge, a synchronization-based point-to-point RBCom system is proposed to eliminate the echo interference, and the design for the transmitter and receiver is discussed. Subsequently,the performance of the proposed RBCom is evaluated and compared with that of visible light communications(VLC)and free space optical communications (FOC). Finally, future research directions are outlined and several implementation challenges of RBCom systems are highlighted.