期刊文献+
共找到15,689篇文章
< 1 2 250 >
每页显示 20 50 100
PRMT1在消化系统肿瘤中的作用
1
作者 郭大金 谭圆圆 金艳花 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2024年第4期526-533,共8页
蛋白质精氨酸甲基转移酶1(PRMT1)是蛋白质精氨酸甲基转移酶家族中的一员,通过将甲基从S-腺苷-L-甲硫氨酸转移到末端胍基氮原子以甲基化精氨酸残基,催化精氨酸残基的单甲基化和不对称二甲基化。研究发现,PRMT1位于细胞核和细胞质内,参与... 蛋白质精氨酸甲基转移酶1(PRMT1)是蛋白质精氨酸甲基转移酶家族中的一员,通过将甲基从S-腺苷-L-甲硫氨酸转移到末端胍基氮原子以甲基化精氨酸残基,催化精氨酸残基的单甲基化和不对称二甲基化。研究发现,PRMT1位于细胞核和细胞质内,参与哺乳动物转录调节、信号转导和DNA损伤修复等过程,并通过多种方式影响肿瘤的增殖、凋亡、转移及耐药等生物学过程,在恶性肿瘤的发生过程中发挥着十分重要的作用。此外,PRMT1还是多种癌症预后不良的生物标志物,其抑制剂能够抑制部分肿瘤的生长。PRMT1与肿瘤的生物学特性密切相关,影响癌症患者的预后。本文主要就PRMT1在消化系统肿瘤中不同的作用靶点以及参与的信号通路做一综述,并简要概括PRMT1抑制剂联合治疗策略,以期为消化系统肿瘤的临床治疗及预后提供新思路。 展开更多
关键词 蛋白质精氨酸甲基转移酶1 甲基化 肿瘤 联合治疗
下载PDF
Barley Protein LFBEP-C1 from Lactiplantibacillus plantarum dy-1 Fermented Barley Extracts by Inhibiting Lipid Accumulation in a Caenorhabditis elegans Model
2
作者 ZHANG Jia Yan LIU Meng Ting +4 位作者 LIU Yu Hao DENG Huan BAI Juan XIE Jian Hua XIAO Xiang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第4期377-386,共10页
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and test... Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways. 展开更多
关键词 LFBEP-C1 Fermentation protein Caenorhabditis elegans Lipid accumulation Signaling pathway
下载PDF
Roles of the tumor microenvironment in the resistance to programmed cell death protein 1 inhibitors in patients with gastric cancer
3
作者 Ren-Jie Xia Xiao-Yu Du +5 位作者 Li-Wen Shen Jian-Guo Ma Shu-Mei Xu Rui-Fang Fan Jian-Wei Qin Long Yan 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3820-3831,共12页
Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advance... Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future. 展开更多
关键词 Gastric cancer Tumor microenvironment Programmed cell death protein 1 IMMUNOTHERAPY Drug resistance
下载PDF
In situ direct reprogramming of astrocytes to neurons via polypyrimidine tract-binding protein 1 knockdown in a mouse model of ischemic stroke
4
作者 Meng Yuan Yao Tang +2 位作者 Tianwen Huang Lining Ke En Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2240-2248,共9页
In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been sho... In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.e B-GFAP-sh PTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-sh PTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment. 展开更多
关键词 astrocyte in situ direct reprogramming ischemic stroke miR-30 based shRNA neuron polypyrimidine tract-binding protein 1 TRANSDIFFERENTIATION
下载PDF
Low Selenium and Low Protein Exacerbate Myocardial Damage in Keshan Disease by Affecting the PINK1/Parkin-mediated Mitochondrial Autophagy Pathway
5
作者 Li-wei ZHANG Hong-qi FENG +1 位作者 Song-bo FU Dian-jun SUN 《Current Medical Science》 SCIE CAS 2024年第1期93-101,共9页
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ... Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway. 展开更多
关键词 Keshan disease low selenium and low protein myocardial mitochondrial injury PTEN induced putative kinase 1(PINK1)/Parkin mitochondrial autophagy
下载PDF
Mesenchymal stromal cells modulate unfolded protein response and preserve β-cell mass in type 1 diabetes
6
作者 SIYUAN LIU YUAN ZHAO +4 位作者 YU YU DOU YE QIAN WANG ZHAOYAN WANG ZUO LUAN 《BIOCELL》 SCIE 2024年第7期1115-1126,共12页
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re... Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice. 展开更多
关键词 Type 1 diabetes Mesenchymal stromal cells Endoplasmic reticulum stress Unfolded protein response Non-obese diabetic mice
下载PDF
C-reactive protein to albumin ratio predict responses to programmed cell death-1 inhibitors in hepatocellular carcinoma patients
7
作者 Bai-Bei Li Lei-Jie Chen +3 位作者 Shi-Liu Lu Biao Lei Gui-Lin Yu Shui-Ping Yu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期61-78,共18页
BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrou... BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrounds the outcomes of most studies.Therefore,it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC.AIM To investigate the role of the C-reactive protein to albumin ratio(CAR)in evaluating the efficacy of PD-1 inhibitors for HCC.METHODS The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed.RESULTS The optimal cut-off value for CAR based on progression-free survival(PFS)was determined to be 1.20 using x-tile software.Cox proportional risk model was used to determine the factors affecting prognosis.Eastern Cooperative Oncology Group performance status[hazard ratio(HR)=1.754,95%confidence interval(95%CI)=1.045-2.944,P=0.033],CAR(HR=2.118,95%CI=1.057-4.243,P=0.034)and tumor number(HR=2.932,95%CI=1.246-6.897,P=0.014)were independent prognostic factors for overall survival.CAR(HR=2.730,95%CI=1.502-4.961,P=0.001),tumor number(HR=1.584,95%CI=1.003-2.500,P=0.048)and neutrophil to lymphocyte ratio(HR=1.120,95%CI=1.022-1.228,P=0.015)were independent prognostic factors for PFS.Two nomograms were constructed based on independent prognostic factors.The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool.The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit.CONCLUSION Overall,we reveal that the CAR is a potential predictor of short-and long-term prognosis in patients with HCC treated with PD-1 inhibitors.If further verified,CAR-based nomogram may increase the number of markers that predict individualized prognosis. 展开更多
关键词 C-reactive protein to albumin ratio Hepatocellular carcinoma Programmed cell death-1 inhibitors Prognosis NOMOGRAM
下载PDF
Polycytosine RNA-binding protein 1 regulates osteoblast function via a ferroptosis pathway in type 2 diabetic osteoporosis
8
作者 Hong-Dong Ma Lei Shi +2 位作者 Hai-Tian Li Xin-Dong Wang Mao-Wei Yang 《World Journal of Diabetes》 SCIE 2024年第5期977-987,共11页
BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by... BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP. 展开更多
关键词 Polycytosine RNA-binding protein 1 Ferroptosis Reactive oxygen species FERRITIN OSTEOBLAST Type 2 diabetic osteoporosis
下载PDF
AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice
9
作者 Zhengwei Hu Jing Yang +7 位作者 Shuo Zhang Mengjie Li Chunyan Zuo Chengyuan Mao Zhongxian Zhang Mibo Tang Changhe Shi Yuming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第1期253-264,共12页
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed... The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease. 展开更多
关键词 adeno-associated virus Alzheimer’s disease APP/PS1 mice carboxyl terminus of Hsp70 interacting protein gene therapy
下载PDF
Targeting neuronal PAS domain protein 2 and KN motif/ankyrin repeat domains 1:Advances in type 2 diabetes therapy
10
作者 Chun-Han Cheng Wen-Rui Hao Tzu-Hurng Cheng 《World Journal of Diabetes》 SCIE 2024年第11期2173-2176,共4页
This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore t... This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D. 展开更多
关键词 Type 2 diabetes Neuronal PAS domain protein 2 KN motif and ankyrin repeat domain 1 β-cell dysfunction Therapeutic target
下载PDF
Hmo1:A versatile member of the high mobility group box family of chromosomal architecture proteins
11
作者 Xin Bi 《World Journal of Biological Chemistry》 2024年第1期1-10,共10页
Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures,which is facilitated by linker histone H1.Formation of chromatin compacts and protects the genome,but al... Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures,which is facilitated by linker histone H1.Formation of chromatin compacts and protects the genome,but also hinders DNA transactions.Cells have evolved mechanisms to modify/remodel chromatin resulting in chromatin states suitable for genome functions.The high mobility group box(HMGB)proteins are non-histone chromatin architectural factors characterized by one or more HMGB motifs that bind DNA in a sequence nonspecific fashion.They play a major role in chromatin dynamics.The Saccharomyces cerevisiae(yeast hereafter)HMGB protein Hmo1 contains two HMGB motifs.However,unlike a canonical HMGB protein that has an acidic C-terminus,Hmo1 ends with a lysine rich,basic,C-terminus,resembling linker histone H1.Hmo1 exhibits characteristics of both HMGB proteins and linker histones in its multiple functions.For instance,Hmo1 promotes transcription by RNA polymerases I and II like canonical HMGB proteins but makes chromatin more compact/stable like linker histones.Recent studies have demonstrated that Hmo1 destabilizes/disrupts nucleosome similarly as other HMGB proteins in vitro and acts to maintain a common topological architecture of genes in yeast genome.This minireview reviews the functions of Hmo1 and the underlying mechanisms,highlighting recent discoveries. 展开更多
关键词 Hmo1 High mobility group box proteins CHROMATIN Chromatin remodeling Gene regulation Ribosomal DNA Ribosomal protein genes DNA damage response Linker histone
下载PDF
AAV-mediated expression of p65shRNA and bone morphogenetic protein 4 synergistically enhances chondrocyte regeneration
12
作者 Yu Yangyi Song Zhuoyue +2 位作者 Lian Qiang Ding Kang Li Guangheng 《中国组织工程研究》 CAS 北大核心 2025年第17期3537-3547,共11页
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma... BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair. 展开更多
关键词 OSTEOARTHRITIS adeno-associated virus bone morphogenetic protein 4 p65-short hairpin RNA gene therapy short hairpin RNA transforming growth factor-β1 extracellular matrix articular cartilage chondrocytes.
下载PDF
Molecular Docking Studies of Botanical Beverage Mix Berries (LIFEGREENTM) against Breast Cancer Cells from Targeted Protein 1QQG, 7B5Q & 7B5O & Uterine Fibroid from Targeted Protein 2AYR, 6T41 & 3GRF
13
作者 Ummi Shahieda Lazaroo Bt Zurrein Shah Lazaroo Navanithan Sivanananthan Chua Kia How 《Computational Molecular Bioscience》 2024年第2期59-123,共65页
Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cea... Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cease to grow after menopause. Fibroids can be classified as intramural, sub serosal, pedunculated, or submucosal based on where they are positioned in the uterus. Although fibroids are benign, they can grow quickly and cause a range of symptoms, such as pelvic pressure, heavy menstrual flow, and infertility. As a result, fibroids are a main reason behind hysterectomy surgeries. The majority of cases of breast cancer are ductal and lobular cancers, making it the second utmost common cancer in women international. Gene mutations like those in BRCA1 or BRCA2 knowingly raise the risk of breast and other cancers, typically with an earlier cancer onset. Cancer risk is influenced by a complex interplay of genetic abnormalities, environmental factors, and lifestyle selections. Further research into these relations is domineering. Although they are common in uterine leiomyomas, especially multiple leiomyomas, MED12 mutations do not significantly correlate with tumor size. These mutations have also been noticed in smooth muscle tumors and leiomyosarcomas, two other types of uterine cancer. The identification of MED12 mutations as the sole genetic abnormality originates in leiomyomas raises the opportunity of a role in the genesis of cancer. 10% - 15% of women who are of reproductive age have endometriosis, which grants serious difficulties because of its chronic nature and range of clinical symptoms. Even after effective surgeries, issues reoccur often, adding to the enormous financial burden. The effects of MED12 mutations have been experiential in recent studies examining the molecular causes of endometriosis-associated infertility, which have shown anomalies in cellular connections and signaling cascades. Computational techniques were used in this study to investigate LifeGreenTM’s potential to prevent uterine fibroids and breast cancer. The efficacy of LifeGreenTM as a preventive measure or a treatment for common gynecological matters was examined and modeled. We investigated the mechanisms underlying LifeGreenTM’s benefits in the treatment of uterine fibroids and breast cancer using computational techniques. Our research contributes to our understanding of its potential therapeutic benefits for women’s health. 展开更多
关键词 Uterine Fibroid Breast Cancer Molecular Docking IRS protein BRCA1 BRCA2 MED12-a ENDOMETRIOSIS
下载PDF
精氨酸甲基转移酶1(PRMT1)介导运动改善骨骼肌萎缩的机制研究进展
14
作者 黄嵩 傅力 《中国运动医学杂志》 CAS CSCD 北大核心 2023年第6期487-492,共6页
骨骼肌萎缩不仅严重影响患者日常活动能力,也是造成诸如2型糖尿病等代谢性疾病的重要诱因。运动干预是改善骨骼肌萎缩的有效手段,最新研究发现蛋白质精氨酸甲基转移酶1(protein arginine methyltransferase 1,PRMT1)作为运动敏感型蛋白... 骨骼肌萎缩不仅严重影响患者日常活动能力,也是造成诸如2型糖尿病等代谢性疾病的重要诱因。运动干预是改善骨骼肌萎缩的有效手段,最新研究发现蛋白质精氨酸甲基转移酶1(protein arginine methyltransferase 1,PRMT1)作为运动敏感型蛋白,通过发挥其转录共激活和精氨酸甲基转移酶的双重作用,可调节多条信号通路以改善骨骼肌萎缩。因此,全面了解PRMT1在运动改善骨骼肌萎缩中的作用机制对于未来以PRMT1为靶点开发治疗肌萎缩的新途径具有重要意义。 展开更多
关键词 骨骼肌 肌萎缩 精氨酸甲基转移酶 prmt1 运动
下载PDF
Death-associated protein kinase 1 is associated with cognitive dysfunction in major depressive disorder 被引量:1
15
作者 Xiao-Hui Li Hong-Can Zhu +5 位作者 Xue-Min Cui Wang Wang Lin Yang Li-Bo Wang Neng-Wei Hu Dong-Xiao Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1795-1801,共7页
We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's d... We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder. 展开更多
关键词 Alzheimer's disease antidepressant drug behavioral tests cognitive dysfunction death-associated protein kinase 1 EXERCISE HIPPOCAMPUS major depressive disorder PHOSPHORYLATION tau protein
下载PDF
Calcium/calmodulin modulates salt responses by binding a novel interacting protein SAMS1 in peanut(Arachis hypogaea L.) 被引量:1
16
作者 Sha Yang Jianguo Wang +7 位作者 Zhaohui Tang Yan Li Jialei Zhang Feng Guo Jingjing Meng Feng Cui Xinguo Li Shubo Wan 《The Crop Journal》 SCIE CSCD 2023年第1期21-32,共12页
The Ca^(2+)/CaM signal transduction pathway helps plants adapt to environmental stress. However, our knowledge on the functional proteins of C^(2+)/CaM pathway in peanut(Arachis hypogeae L.) remains limited. In the pr... The Ca^(2+)/CaM signal transduction pathway helps plants adapt to environmental stress. However, our knowledge on the functional proteins of C^(2+)/CaM pathway in peanut(Arachis hypogeae L.) remains limited. In the present study, a novel calmodulin 4(CaM4)-binding protein S-adenosyl-methionine synthetase 1(SAMS1) in peanut was identified using a yeast two-hybrid assay. Expression of AhSAMS1was induced by Ca^(2+), ABA, and salt stress. To elucidate the function of AhSAMS1, physiological and phenotypic analyses were performed with wild-type and transgenic materials. Overexpression of AhSAMS1increased spermidine and spermidine synthesis while decreased the contents of ethylene, thereby eliminating excessive reactive oxygen species(ROS) in transgenic lines under salt stress. AhSAMS1 reduced uptake of Na+and leakage of K+from mesophyll cells, and was less sensitive to salt stress during early seedling growth, in agreement with the induction of SOS and NHX genes Transcriptomics combined with epigenetic regulation uncovered relationships between differentially expressed genes and differentially methylated regions, which raised the salt tolerance and plants growth. Our findings support a model in which the role of AhSAMS1 in the ROS-dependent regulation of ion homeostasis was enhanced by Ca^(2+)/CaM while AhSAMS1-induced methylation was regulated by CaM, thus providing a new strategy for increasing the tolerance of plants to salt stress. 展开更多
关键词 AhCaM4 AhSAMS1 protein interaction Polyamines Salt tolerance
下载PDF
Calcitriol attenuates liver fibrosis through hepatitis C virus nonstructural protein 3-transactivated protein 1-mediated TGF β1/Smad3 and NF-κB signaling pathways 被引量:1
17
作者 Liu Shi Li Zhou +13 位作者 Ming Han Yu Zhang Yang Zhang Xiao-Xue Yuan Hong-Ping Lu Yun Wang Xue-Liang Yang Chen Liu Jun Wang Pu Liang Shun-Ai Liu Xiao-Jing Liu Jun Cheng Shu-Mei Lin 《World Journal of Gastroenterology》 SCIE CAS 2023年第18期2798-2817,共20页
BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy optio... BACKGROUND Hepatic fibrosis is a serious condition,and the development of hepatic fibrosis can lead to a series of complications.However,the pathogenesis of hepatic fibrosis remains unclear,and effective therapy options are still lacking.Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1(NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis,but its role in diseases including hepatic fibrosis remains undefined.Therefore,additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups,comprising the normal,fibrosis,and calcitriol treatment groups,and liver fibrosis was modeled by carbon tetrachloride(CCl4).To evaluate the level of hepatic fibrosis in every group,serological and pathological examinations of the liver were conducted.TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells.NS3TP1,α-smooth muscle actin(α-SMA),collagen I,and collagen Ⅲ in every group were examined using a Western blot and real-time quantitative polymerase chain reaction.The activity of the transforming growth factor beta 1(TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected.The statistical analysis of the data was performed using the Student’s t test.RESULTS NS3TP1 promoted the activation,proliferation,and differentiation of hepatic stellate cells(HSCs)and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways,as evidenced by the presence of α-SMA,collagen I,collagen Ⅲ,p-smad3,and p-p65 in LX-2 cells,which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference.The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression,as shown by the luciferase assay.NS3TP1 inhibited the apoptosis of HSCs.Moreover,both Smad3 and p65 could bind to NS3TP1,and p65 increased the promoter activity of NS3TP1,while NS3TP1 increased the promoter activity of TGFβ1 receptor I,as indicated by coimmunoprecipitation and luciferase assay results.Both in vivo and in vitro,treatment with calcitriol dramatically reduced the expression of NS3TP1.Calcitriol therapy-controlled HSCs activation,proliferation,and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice.Furthermore,calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique,prospective therapeutic target in hepatic fibrosis. 展开更多
关键词 Nonstructural protein 3-transactivated protein 1 CALCITRIOL Liver fibrosis Hepatic stellate cells Mouse model TGFβ1/Smad3 NF-κB Signaling pathway
下载PDF
A candidate protective factor in amyotrophic lateral sclerosis:heterogenous nuclear ribonucleoprotein G 被引量:1
18
作者 Fang Yang Wen-Zhi Chen +2 位作者 Shi-Shi Jiang Xiao-Hua Wang Ren-Shi Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1527-1534,共8页
Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucl... Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown.In this study,we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis.Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting,and cell proliferation and proteins(TAR DNA binding protein 43,superoxide dismutase 1,and Bax)were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells.We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins.Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons.Amyotrophic lateral sclerosis mice were examined at three stages:preonset(60-70 days),onset(90-100 days)and progression(120-130 days).The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage.The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group,whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage.The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group.The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage.The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage,significantly decreased at the onset stage,and significantly increased at the progression stage compared with the control group.heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage.After heterogenous nuclear ribonucleoprotein G gene silencing,PC12 cell survival was lower than that of control cells.Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells.Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord. 展开更多
关键词 amyotrophic lateral sclerosis Bax heterogenous nuclear ribonucleoprotein G heterogenous nuclear ribonucleoprotein G-siRNA neuron death superoxide dismutase 1 TAR DNA binding protein 43 TG(SOD1*G93A)1Gur mice
下载PDF
Overexpression of mitogen-activated protein kinase phosphatase-1 in endothelial cells reduces blood-brain barrier injury in a mouse model of ischemic stroke 被引量:1
19
作者 Xiu-De Qin Tai-Qin Yang +6 位作者 Jing-Hui Zeng Hao-Bin Cai Shao-Hua Qi Jian-Jun Jiang Ying Cheng Long-Sheng Xu Fan Bu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1743-1749,共7页
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le... Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis. 展开更多
关键词 blood-brain barrier brain injury cerebral ischemia endothelial cells extracellular signal-regulated kinase 1/2 functional recovery mitogenactivated protein kinase phosphatase 1 OCCLUDIN oxygen and glucose deprivation transient middle cerebral artery occlusion
下载PDF
Transcription factor glucocorticoid modulatory element-binding protein 1 promotes hepatocellular carcinoma progression by activating Yes-associate protein 1
20
作者 Cheng Chen Hai-Guan Lin +4 位作者 Zheng Yao Yi-Ling Jiang Hong-Jin Yu Jing Fang Wei-Na Li 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第6期988-1004,共17页
BACKGROUND Glucocorticoid modulatory element-binding protein 1(GMEB1),which has been identified as a transcription factor,is a protein widely expressed in various tissues.Reportedly,the dysregulation of GMEB1 is linke... BACKGROUND Glucocorticoid modulatory element-binding protein 1(GMEB1),which has been identified as a transcription factor,is a protein widely expressed in various tissues.Reportedly,the dysregulation of GMEB1 is linked to the genesis and development of multiple cancers.AIM To explore GMEB1’s biological functions in hepatocellular carcinoma(HCC)and figuring out the molecular mechanism.METHODS GMEB1 expression in HCC tissues was analyzed employing the StarBase database.Immunohistochemical staining,Western blotting and quantitative realtime PCR were conducted to examine GMEB1 and Yes-associate protein 1(YAP1)expression in HCC cells and tissues.Cell counting kit-8 assay,Transwell assay and flow cytometry were utilized to examine HCC cell proliferation,migration,invasion and apoptosis,respectively.The JASPAR database was employed for predicting the binding site of GMEB1 with YAP1 promoter.Dual-luciferase reporter gene assay and chromatin immunoprecipitation-qPCR were conducted to verify the binding relationship of GMEB1 with YAP1 promoter region.RESULTS GMEB1 was up-regulated in HCC cells and tissues,and GMEB1 expression was correlated to the tumor size and TNM stage of HCC patients.GMEB1 overexpression facilitated HCC cell multiplication,migration,and invasion,and suppressed the apoptosis,whereas GMEB1 knockdown had the opposite effects.GMEB1 bound to YAP1 promoter region and positively regulated YAP1 expression in HCC cells.CONCLUSION GMEB1 facilitates HCC malignant proliferation and metastasis by promoting the transcription of the YAP1 promoter region. 展开更多
关键词 Hepatocellular carcinoma Glucocorticoid modulatory element-binding protein 1 Yes-associate protein 1 Apoptosis Proliferation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部