We present a case of Holoprosencephaly (HPE) with cyclopia and proboscis that was delivered in Katutura Intermediate Hospital, Namibia. The mother was a 24-year-old, G2P1 with no known comorbid conditions and no histo...We present a case of Holoprosencephaly (HPE) with cyclopia and proboscis that was delivered in Katutura Intermediate Hospital, Namibia. The mother was a 24-year-old, G2P1 with no known comorbid conditions and no history of illicit or over-the-counter drug use. Her first pregnancy was uneventful and resulted in delivery of a normal baby. She had not attended antenatal clinic by the time of her presentation with the index pregnancy and the abnormality was picked up from the booking sonar. She went into spontaneous preterm labour and delivery before the planned date for admission for termination of pregnancy and physical examination of the baby confirmed the diagnosis of Holoprosencephaly with cyclopia. The pictures presented in this article were taken after obtaining parental consent.展开更多
Due to its real-time control,high folding ratio,and structure self-locking,flexible large curvature self-folding devices have broad application prospects,such as foldable human implants,flexible electronics,and flexib...Due to its real-time control,high folding ratio,and structure self-locking,flexible large curvature self-folding devices have broad application prospects,such as foldable human implants,flexible electronics,and flexible robots.Driven by this background,flexible large curvature folding butterfly(Polyura eudamippus)proboscises were studied in this work.The folding ratio of the proboscises was about 15.The curvature of coiled proboscises ranged from about 150 m_1 to 880 m The external and internal structures of the proboscises were studied by different methods.Three main strategies for large-curvature folding of proboscises were identified:a gradual decrease in thickness,a lower elastic modulus,and(most importantly)large numbers of regular corrugated cracks arranged on the surface.These corrugated cracks can effectively accommodate the coiled strain and provide space for the large curvature folding of proboscises.Finally,a 4D printed coiled sample with corrugated cracks was fabricated to mimic the proboscises stretching process.Large-curvature folding strategies,based on these proboscises,provide insights for the biomimetic design of artificial highly folded components.展开更多
In this study, we investigated the dynamic functions of the tip region of the butterfly proboscis through which liquid is sucked during liquid feeding. The microstructures and flow patterns in the tip region of the pr...In this study, we investigated the dynamic functions of the tip region of the butterfly proboscis through which liquid is sucked during liquid feeding. The microstructures and flow patterns in the tip region of the proboscis were in vivo analyzed. The tip region can be divided into two functional sections: namely adhesion and suction sections. The liquid adheres to the adhesion section during liquid suction. Although the tip region has numerous slits connected to food canal of the proboscis, liquid is mainly sucked through the suction section, which section is submerged in the fluid pulled by the adhesion section and then successfully imbibes liquid. To check the dynamic functions of the tip region, we fabricated a suction tip model having adhesion and suction parts. The in vitro model experiments show that the hydrophilicity of the adhesion part and the existence of the suction inlet improve the liquid uptake driven by a suction pump. This study may provide insights for the biomimetic design of nectar-feeding butterflies.展开更多
The Mesozoic family Mesopsychidae Tillyard, 1917 presently consists of seven described genera and 13 species from the mid-Triassic to the Early Cretaceous of Australia, South Africa and Eurasia. In the present paper o...The Mesozoic family Mesopsychidae Tillyard, 1917 presently consists of seven described genera and 13 species from the mid-Triassic to the Early Cretaceous of Australia, South Africa and Eurasia. In the present paper one new genus and three new species of fossil mesopsychids are described that add significant distributional and stratigraphic extensions to the family. This finding documents the first formal record of fossil Mesopsychidae in China. Both Lichnomesopsyche gloriae gen. et sp. nov. and L. daohugouensis gen. et sp. nov. were found from the Middle Jurassic Jiulongshan Formation of Inner Mongolia, whereas Vitimopsyche kozlovi sp. nov., of mid Early Cretaceous age, was collected from the Jehol Biota of northern Hebei Province. This new, wellpreserved material from China reveals complete and previously unknown body features, including head, antennae, mouthparts, legs and abdomen. The delicate and long proboscides of these new taxa indicate that they were feeding on externally exposed, nutrient-rich fluids of gymnospermous ovulate fructifications, and incapable of piercing surface epidermis - attributable principally to the absence of stylets. These proboscides originated, perhaps multiply, among basal Mecoptera and are functionally and structurally convergent with equivalent mouthparts borne by fossil and extant Diptera, Lepidoptera, Neuroptera and Coleoptera.展开更多
Mosquito has the ability to penetrate the skin with painless insertion. It has attracted the researchers to mimic the bite and develop a painless microneedle. Mosquito applies axial compressive load along with frequen...Mosquito has the ability to penetrate the skin with painless insertion. It has attracted the researchers to mimic the bite and develop a painless microneedle. Mosquito applies axial compressive load along with frequency on fascicle to penetrate the human skin and retract if it senses instability prior to insertion. The mechanism of mosquito bite is studied in this work which is divided into two stages for analysis considering different boundary conditions. The probing behaviour of mosquito is considered as stage I and the process of penetration as stage II. An equivalent mechanical model for stage I is proposed and a mathematical model is developed to understand the instability of fascicle in terms of frequency and magnitude of force applied. The governing equation and associated boundary conditions are simplified into Mathieu equation and regions of dynamic instability are obtained through the solution. Results confirm instability of the fascicle during stage I of insertion. The probing behaviour of mosquito is discussed in terms of applied force and vibrating frequency. Horizontal reaction forces exerted by labium on fascicle during buckling improve the stability and enable fascicle to withstand high compressive forces. The analysis and results are utilized to set design guidelines for the development of dynamically stable vibration-assisted microneedle.展开更多
Drosophila melanogaster feeds mainly on rotten fruits, which contain many kinds of sugar. Thus, the sense of sweet taste has evolved to serve as a dominant regulator and driver of feeding behavior. Although several su...Drosophila melanogaster feeds mainly on rotten fruits, which contain many kinds of sugar. Thus, the sense of sweet taste has evolved to serve as a dominant regulator and driver of feeding behavior. Although several sugar receptors have been described, it remains poorly understood how the sensory input is transformed into an appetitive behavior. Here, we used a neural silencing approach to screen brain circuits, and identified neurons labeled by three Gal4 lines that modulate Drosophila feeding behavior. These three Gal4 lines labeled neurons mainly in the suboesophageal ganglia (SOG), which is considered to be the fly's pri- mary taste center. When we blocked the activity of these neurons, flies decreased their sugar consumption significantly. In contrast, activation of these neurons resulted in enhanced feeding behavior and increased food consumption not only towards sugar, but to an array of food sources. Moreover, upon neuronal activation, the flies demonstrated feeding behavior even in the absence of food, which suggests that neuronal activation can replace food as a stimulus for feeding behavior. These findings indicate that these Gal4-1abeled neurons, which function downstream of sensory neurons and regulate feeding behavior to- wards different food sources is necessary in Drosophila feeding control.展开更多
文摘We present a case of Holoprosencephaly (HPE) with cyclopia and proboscis that was delivered in Katutura Intermediate Hospital, Namibia. The mother was a 24-year-old, G2P1 with no known comorbid conditions and no history of illicit or over-the-counter drug use. Her first pregnancy was uneventful and resulted in delivery of a normal baby. She had not attended antenatal clinic by the time of her presentation with the index pregnancy and the abnormality was picked up from the booking sonar. She went into spontaneous preterm labour and delivery before the planned date for admission for termination of pregnancy and physical examination of the baby confirmed the diagnosis of Holoprosencephaly with cyclopia. The pictures presented in this article were taken after obtaining parental consent.
基金This work was funded by the project of National Key R&D Program of China(No.2018YFA0703300)the Program for HUST Academic Frontier Youth Team of“4D Printing Technology”(No.2018QYTD04)+5 种基金Science and Technology Project of Wuhan(No.2018010401011281)Natural Science Foundation of Hubei Province(No.2018CFB502)State Key Labora-tory of Materials Processing and Die&Mould Tech-nology,Huazhong University of Science and Technol-ogy(No.P2019-006)China Postdoctoral Science Foundation(No.2019M650648)Beiing Natural Science Foundation(No.3204043)Opening Project of the Key Laboratory of Bionic Engineering(Ministry of Education),Jilin University(No.K201901,No.K201903).
文摘Due to its real-time control,high folding ratio,and structure self-locking,flexible large curvature self-folding devices have broad application prospects,such as foldable human implants,flexible electronics,and flexible robots.Driven by this background,flexible large curvature folding butterfly(Polyura eudamippus)proboscises were studied in this work.The folding ratio of the proboscises was about 15.The curvature of coiled proboscises ranged from about 150 m_1 to 880 m The external and internal structures of the proboscises were studied by different methods.Three main strategies for large-curvature folding of proboscises were identified:a gradual decrease in thickness,a lower elastic modulus,and(most importantly)large numbers of regular corrugated cracks arranged on the surface.These corrugated cracks can effectively accommodate the coiled strain and provide space for the large curvature folding of proboscises.Finally,a 4D printed coiled sample with corrugated cracks was fabricated to mimic the proboscises stretching process.Large-curvature folding strategies,based on these proboscises,provide insights for the biomimetic design of artificial highly folded components.
文摘In this study, we investigated the dynamic functions of the tip region of the butterfly proboscis through which liquid is sucked during liquid feeding. The microstructures and flow patterns in the tip region of the proboscis were in vivo analyzed. The tip region can be divided into two functional sections: namely adhesion and suction sections. The liquid adheres to the adhesion section during liquid suction. Although the tip region has numerous slits connected to food canal of the proboscis, liquid is mainly sucked through the suction section, which section is submerged in the fluid pulled by the adhesion section and then successfully imbibes liquid. To check the dynamic functions of the tip region, we fabricated a suction tip model having adhesion and suction parts. The in vitro model experiments show that the hydrophilicity of the adhesion part and the existence of the suction inlet improve the liquid uptake driven by a suction pump. This study may provide insights for the biomimetic design of nectar-feeding butterflies.
基金supported by the National Natural Science Foundation of China(No.40872022)the Nature Science Foundation of Beijing(No.5082002)Scientific Research Key Program and PHR Project of Beijing Municipal Commission of Education
文摘The Mesozoic family Mesopsychidae Tillyard, 1917 presently consists of seven described genera and 13 species from the mid-Triassic to the Early Cretaceous of Australia, South Africa and Eurasia. In the present paper one new genus and three new species of fossil mesopsychids are described that add significant distributional and stratigraphic extensions to the family. This finding documents the first formal record of fossil Mesopsychidae in China. Both Lichnomesopsyche gloriae gen. et sp. nov. and L. daohugouensis gen. et sp. nov. were found from the Middle Jurassic Jiulongshan Formation of Inner Mongolia, whereas Vitimopsyche kozlovi sp. nov., of mid Early Cretaceous age, was collected from the Jehol Biota of northern Hebei Province. This new, wellpreserved material from China reveals complete and previously unknown body features, including head, antennae, mouthparts, legs and abdomen. The delicate and long proboscides of these new taxa indicate that they were feeding on externally exposed, nutrient-rich fluids of gymnospermous ovulate fructifications, and incapable of piercing surface epidermis - attributable principally to the absence of stylets. These proboscides originated, perhaps multiply, among basal Mecoptera and are functionally and structurally convergent with equivalent mouthparts borne by fossil and extant Diptera, Lepidoptera, Neuroptera and Coleoptera.
文摘Mosquito has the ability to penetrate the skin with painless insertion. It has attracted the researchers to mimic the bite and develop a painless microneedle. Mosquito applies axial compressive load along with frequency on fascicle to penetrate the human skin and retract if it senses instability prior to insertion. The mechanism of mosquito bite is studied in this work which is divided into two stages for analysis considering different boundary conditions. The probing behaviour of mosquito is considered as stage I and the process of penetration as stage II. An equivalent mechanical model for stage I is proposed and a mathematical model is developed to understand the instability of fascicle in terms of frequency and magnitude of force applied. The governing equation and associated boundary conditions are simplified into Mathieu equation and regions of dynamic instability are obtained through the solution. Results confirm instability of the fascicle during stage I of insertion. The probing behaviour of mosquito is discussed in terms of applied force and vibrating frequency. Horizontal reaction forces exerted by labium on fascicle during buckling improve the stability and enable fascicle to withstand high compressive forces. The analysis and results are utilized to set design guidelines for the development of dynamically stable vibration-assisted microneedle.
基金supported by the External Cooperation Program of Bureau of International Cooperation,Chinese Academy of Sciences(GJHZ201302)the National Natural Science Foundation of China(31030037)+1 种基金the Ministry of Science and Technology of China(2012CB825504)the Strategic Priority Research Program B of the Chinese Academy of Sciences(XDB02040200)
文摘Drosophila melanogaster feeds mainly on rotten fruits, which contain many kinds of sugar. Thus, the sense of sweet taste has evolved to serve as a dominant regulator and driver of feeding behavior. Although several sugar receptors have been described, it remains poorly understood how the sensory input is transformed into an appetitive behavior. Here, we used a neural silencing approach to screen brain circuits, and identified neurons labeled by three Gal4 lines that modulate Drosophila feeding behavior. These three Gal4 lines labeled neurons mainly in the suboesophageal ganglia (SOG), which is considered to be the fly's pri- mary taste center. When we blocked the activity of these neurons, flies decreased their sugar consumption significantly. In contrast, activation of these neurons resulted in enhanced feeding behavior and increased food consumption not only towards sugar, but to an array of food sources. Moreover, upon neuronal activation, the flies demonstrated feeding behavior even in the absence of food, which suggests that neuronal activation can replace food as a stimulus for feeding behavior. These findings indicate that these Gal4-1abeled neurons, which function downstream of sensory neurons and regulate feeding behavior to- wards different food sources is necessary in Drosophila feeding control.