Creating a man-made life in the laboratory is one of life science's most intriguing yet challenging problems.Advances in synthetic biology and related theories,particularly those related to the origin of life,have...Creating a man-made life in the laboratory is one of life science's most intriguing yet challenging problems.Advances in synthetic biology and related theories,particularly those related to the origin of life,have laid the groundwork for further exploration and understanding in this field of artificial life or man-made life.But there remains a wealth of quantitative mathematical models and tools that have yet to be applied to this area.In this paper,we review the two main approaches often employed in the field of man-made life:the top-down approach that reduces the complexity of extant and existing living systems and the bottom-up approach that integrates welldefined components,by introducing the theoretical basis,recent advances,and their limitations.We then argue for another possible approach,namely"bottom-up from the origin of life":Starting with the establishment of autocatalytic chemical reaction networks that employ physical boundaries as the initial compartments,then designing directed evolutionary systems,with the expectation that independent compartments will eventually emerge so that the system becomes free-living.This approach is actually analogous to the process of how life originated.With this paper,we aim to stimulate the interest of synthetic biologists and experimentalists to consider a more theoretical perspective,and to promote the communication between the origin of life community and the synthetic man-made life community.展开更多
Liquid-liquid phase separation(LLPS)or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes.Mechanism study of regulating LLPS is therefore c...Liquid-liquid phase separation(LLPS)or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes.Mechanism study of regulating LLPS is therefore central to the understanding of protein aggregation and disease-relevant process.We report a fused in sarcoma protein(FUS)-derived low complexity(LC)sequence that undergoes LLPS in the presence of metal ions.The LC protein was constructed by fusing a hexhistidine-tag to the N-terminal low complexity domain(the residues 1–165 in QGSY-rich segment)of FUS.Spontaneous condensation of the intrinsic disordered protein into coacervate droplets was observed in the presence of metal ions that chelate oligohistidine moieties to form protein matrix.We demonstrate the key role of metal ion-histidine coordination in governing LLPS behaviours and the fluidity of biomolecular condensates.By taking advantage of competitive binding using chelators,we show the possibility of regulating dynamic behaviors of disease-relevant protein droplets,and developing a potential approach towards controllable biological encapsulation/release.展开更多
Herein we present a new perspective showing that water-soluble liquids,when added to water,undergo transient emulsification before complete dissolution.Thus,non-amphiphilic macromolecules can self-assemble at the two-...Herein we present a new perspective showing that water-soluble liquids,when added to water,undergo transient emulsification before complete dissolution.Thus,non-amphiphilic macromolecules can self-assemble at the two-miscible-phase interface when cononsolvent effect appears.A representative case shown here is that when poly(A/-isopropylacrylamide)(PNIPAm),prepared by aqueous radical polymerization,in methanol solution is added into water,the polymer chains rapidly self-assemble into hollow micro-vesicles based on the cononsolvency at water/methanol interface.This finding provides a subtle strategy to prepare hollow micro-vesicles by non-amphiphilic polymers without template participating.We proposed a new concept^interfacial cononsolvencyw to describe the formation process.Due to the easy modification process,sugar-contained PNIPAm chains are synthesized by copolymerization.As an application example,it is shown that these sugar-contained PNIPAm chains can afford MsweetH micro-vesicles(containing glucose residues).And the"sweer"micro-vesicles can well mimick the protocells which are involved in the recognition of bacteria.展开更多
The diversity of protocell membrane structures is crucial for the regulation of cell activities and indispensable to the origin of life.Prior to the evolution of complex cellular machinery,spontaneous protocell membra...The diversity of protocell membrane structures is crucial for the regulation of cell activities and indispensable to the origin of life.Prior to the evolution of complex cellular machinery,spontaneous protocell membrane evolution results from the intrinsic physicochemical properties of simple molecules under specific environmental conditions.Here,we report the evolution of the morphology of cell-sized model protocell membranes from giant vesicles to pearling and helical nanostructures,resembling morphologies of eukaryocytes,nostoc,and spirilla.This evolution occurs in a single binary aqueous system composed of an achiral single-chain amphiphile and a biogenic polyamine(spermidine or spermine)upon evaporating water,feeding amphiphiles,or increasing pH in response to various primitive fluctuating conditions.In contrast,nonbiogenic polyamines(triamine,triethylenetetramine,and hexamethyltriethylenetetramine)with slight differences in the number of methylene groups or protonated amine groups do not induce such a kind of evolution.The evolution of the shape transformation strongly relies on the balance between electrostatic attraction and hydrogen bonding,attributed to the odd/even effect of polyamines in the assembly.Strikingly,both pearling and helical structures emerge from multilamellar vesicles undergoing different processes,where the helix shows stronger permeability and encapsulation capability due to its multicompartmentalized structure.Thus,subtle adjustment of weak intramolecular interactions not only yields significant changes in the morphological evolution of protocell membranes but also brings new insights into the natural inevitability of biogenic small molecules.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:12205012,71731002Beijing Normal University via the Youth Talent Strategic Program,Grant/Award Number:28705-310432106Atlas Project of bio-archae by Swarma Research。
文摘Creating a man-made life in the laboratory is one of life science's most intriguing yet challenging problems.Advances in synthetic biology and related theories,particularly those related to the origin of life,have laid the groundwork for further exploration and understanding in this field of artificial life or man-made life.But there remains a wealth of quantitative mathematical models and tools that have yet to be applied to this area.In this paper,we review the two main approaches often employed in the field of man-made life:the top-down approach that reduces the complexity of extant and existing living systems and the bottom-up approach that integrates welldefined components,by introducing the theoretical basis,recent advances,and their limitations.We then argue for another possible approach,namely"bottom-up from the origin of life":Starting with the establishment of autocatalytic chemical reaction networks that employ physical boundaries as the initial compartments,then designing directed evolutionary systems,with the expectation that independent compartments will eventually emerge so that the system becomes free-living.This approach is actually analogous to the process of how life originated.With this paper,we aim to stimulate the interest of synthetic biologists and experimentalists to consider a more theoretical perspective,and to promote the communication between the origin of life community and the synthetic man-made life community.
基金financially supported by the National Natural Science Foundation of China (Nos. 22072159 and 22172007)the Fundamental Research Funds for the Central Universities(No. buctrc202015)
文摘Liquid-liquid phase separation(LLPS)or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes.Mechanism study of regulating LLPS is therefore central to the understanding of protein aggregation and disease-relevant process.We report a fused in sarcoma protein(FUS)-derived low complexity(LC)sequence that undergoes LLPS in the presence of metal ions.The LC protein was constructed by fusing a hexhistidine-tag to the N-terminal low complexity domain(the residues 1–165 in QGSY-rich segment)of FUS.Spontaneous condensation of the intrinsic disordered protein into coacervate droplets was observed in the presence of metal ions that chelate oligohistidine moieties to form protein matrix.We demonstrate the key role of metal ion-histidine coordination in governing LLPS behaviours and the fluidity of biomolecular condensates.By taking advantage of competitive binding using chelators,we show the possibility of regulating dynamic behaviors of disease-relevant protein droplets,and developing a potential approach towards controllable biological encapsulation/release.
基金the National Natural Science Foundation of China(Nos.21905192,21935008 and 21674074)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and China Postdoctoral Science Foundation(No.2019M661925).
文摘Herein we present a new perspective showing that water-soluble liquids,when added to water,undergo transient emulsification before complete dissolution.Thus,non-amphiphilic macromolecules can self-assemble at the two-miscible-phase interface when cononsolvent effect appears.A representative case shown here is that when poly(A/-isopropylacrylamide)(PNIPAm),prepared by aqueous radical polymerization,in methanol solution is added into water,the polymer chains rapidly self-assemble into hollow micro-vesicles based on the cononsolvency at water/methanol interface.This finding provides a subtle strategy to prepare hollow micro-vesicles by non-amphiphilic polymers without template participating.We proposed a new concept^interfacial cononsolvencyw to describe the formation process.Due to the easy modification process,sugar-contained PNIPAm chains are synthesized by copolymerization.As an application example,it is shown that these sugar-contained PNIPAm chains can afford MsweetH micro-vesicles(containing glucose residues).And the"sweer"micro-vesicles can well mimick the protocells which are involved in the recognition of bacteria.
基金supported by the National Natural Science Foundation of China(Nos.21972149 and 21988102).
文摘The diversity of protocell membrane structures is crucial for the regulation of cell activities and indispensable to the origin of life.Prior to the evolution of complex cellular machinery,spontaneous protocell membrane evolution results from the intrinsic physicochemical properties of simple molecules under specific environmental conditions.Here,we report the evolution of the morphology of cell-sized model protocell membranes from giant vesicles to pearling and helical nanostructures,resembling morphologies of eukaryocytes,nostoc,and spirilla.This evolution occurs in a single binary aqueous system composed of an achiral single-chain amphiphile and a biogenic polyamine(spermidine or spermine)upon evaporating water,feeding amphiphiles,or increasing pH in response to various primitive fluctuating conditions.In contrast,nonbiogenic polyamines(triamine,triethylenetetramine,and hexamethyltriethylenetetramine)with slight differences in the number of methylene groups or protonated amine groups do not induce such a kind of evolution.The evolution of the shape transformation strongly relies on the balance between electrostatic attraction and hydrogen bonding,attributed to the odd/even effect of polyamines in the assembly.Strikingly,both pearling and helical structures emerge from multilamellar vesicles undergoing different processes,where the helix shows stronger permeability and encapsulation capability due to its multicompartmentalized structure.Thus,subtle adjustment of weak intramolecular interactions not only yields significant changes in the morphological evolution of protocell membranes but also brings new insights into the natural inevitability of biogenic small molecules.