期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Glycyrrhizic Acid-Loaded Poly-ɛ-Caprolactone Nanoparticles Decrease PRRSV Infection in MARC-145 Cells
1
作者 Samantha Jardon Oscar Escalona +4 位作者 Carlos Gerardo García David Quintanar Carlos Ignacio Soto María Zaida Urbán Susana Elisa Mendoza 《Open Journal of Veterinary Medicine》 2023年第12期221-236,共16页
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease with worldwide distribution caused by Betaarterivirus suid (PRRSV). The virion has great genetic and antigenic variability wi... Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease with worldwide distribution caused by Betaarterivirus suid (PRRSV). The virion has great genetic and antigenic variability with a marked increase in virulence. Vaccines tested to date have been of little use in controlling the problems caused by PRRSV, so the present study was conceived to evaluate the antiviral effect of polymeric nanoparticles (PNPs) made with glycyrrhizic acid (GA). Recent work has proven that this nanoparticle system is stable. These nanoparticles have good GA carrying capacity, a size < 250 nm, a spherical morphology, and a wide safety range. The integrity of cell morphology can be maintained for up to 72 h. The antiviral effect of this nanoparticle system was tested in cultures of MARC-145 cells in pre- and coinfection assays with PRRSV to evaluate changes in cell morphology and effects on cell viability. The use of PNPsGA with the real-time quantitative polymerase chain reaction (RT-qPCR) decreased viral infection by 38% in 3 amplification cycles. These results suggest that this system has an antiviral effect against PRRSV under the study conditions established. 展开更多
关键词 CYTOTOXICITY Glycyrrhizic Acid Cell Morphology Polymeric Nanoparticles prrs virus
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部