Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation a...Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.展开更多
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current...Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.展开更多
The partial oxidation of methane under periodic operation over Ni/y/-Al2O3 catalyst was investigated in a Pd-membrane reactor. The effects of key parameters such as the inlet composition and the sweeping, gas on metha...The partial oxidation of methane under periodic operation over Ni/y/-Al2O3 catalyst was investigated in a Pd-membrane reactor. The effects of key parameters such as the inlet composition and the sweeping, gas on methane conversion and the hydrogen recovery are numerically estalallshed with two penodtc input ttmctlons. In order to analyze the effect of the inputs modulation, the reaction was performed under low steam to methane ratio at a mod-erate temperature and pressure. It was obtained that to achieve process intensification is to operate the process in a periodic way. The main results show that the periodic input functions can improve the performance of the process compared to the optimal steady state operation. Moreover, there is an optimum amplitude of manipulated inputs leads to a maximum of hydrogen recovery. It is noteworthy that the comparison between the predicted performancevia the sinusoidal and the'square ways show that the better'average performance was obtainedwith the square way.展开更多
A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction...A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction of SnO2 are large, and suggest CH4 :SnO2 = 2:1 as the feasible reduction condition for achieving high purities of syngas and avoiding vaporization of produced Sn. Subsequently, the amount of H2 and energetic upgrade factors under different oxidation conditions are compared, in which excess water vapor is found beneficial for hydrogen production and fuel energetic upgradation. Moreover, the effect of incom plete recovery of SnO2 on the subsequent cycle is underscored and explained. After accounting for factors such as isothermal operation and cycle stability, CH4 :SnO2 = 2:1 and H2O:Sn = 4:1 are suggested for highest solar-to-fuel efficiency of 46.1% at nonisothermal condition, where the reduction and oxidation temperature are 1400 and 600 K, respectively.展开更多
Inspired by the promising hydrogen production in the solar thermochemical(STC)cycle based on non-stoichiometric oxides and the operation temperature decreasing effect of methane reduction,a high-fuel-selectivity and C...Inspired by the promising hydrogen production in the solar thermochemical(STC)cycle based on non-stoichiometric oxides and the operation temperature decreasing effect of methane reduction,a high-fuel-selectivity and CH4-introduced solar thermochemical cycle based on MoO2/Mo is studied.By performing HSC simulations,the energy upgradation and energy conversion potential under isothermal and non-isothermal operating conditions are compared.In the reduction step,MoO2:CH4=2 and 1020 K<Tred<1600 K are found to be most favorable for syngas selectivity and methane conversion.Compared to the STC cycle without CH4,the introduction of methane yields a much higher hydrogen production,especially at the lower temperature range and atmospheric pressure.In the oxidation step,a moderately excessive water is beneficial for energy conversion whether in isothermal or non-isothermal operations,especially at H2O:Mo=4.In the whole STC cycle,the maximum non-isothermal and isothermal efficiency can reach 0.417 and 0.391 respectively.In addition,the predicted efficiency of the second cycle is also as high as 0.454 at Tred=1200 K and Toxi=400 K,indicating that MoO2 could be a new and potential candidate for obtaining solar fuel by methane reduction.展开更多
The effects of CO2 on the partial oxidation of heptane for hydrogen generation have been studied. Based on the experimental results and thermodynamic equilibrium calculations, the validity of CO2 addition to weaken t...The effects of CO2 on the partial oxidation of heptane for hydrogen generation have been studied. Based on the experimental results and thermodynamic equilibrium calculations, the validity of CO2 addition to weaken the hot spots, and the feasibility of the autothermal operation are discussed.展开更多
This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrog...This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrogenation process in the China's Mainland.展开更多
基金supported by the National Key Research and Development Program of China(Program Number 2021YFB4000100)the Beijing Postdoctoral Research Foundation(Grant Number 2023-ZZ-63).
文摘Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.
基金supported by the National Key Research and Development Program of China(Materials and Process Basis of Electrolytic Hydrogen Production from Fluctuating Power Sources such as Photovoltaic/Wind Power,No.2021YFB4000100).
文摘Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.
基金supported in part by the University of Sétif,and the Ministry of Higher Education and Scientific Research (Algeria) with Project No.E01220080023
文摘The partial oxidation of methane under periodic operation over Ni/y/-Al2O3 catalyst was investigated in a Pd-membrane reactor. The effects of key parameters such as the inlet composition and the sweeping, gas on methane conversion and the hydrogen recovery are numerically estalallshed with two penodtc input ttmctlons. In order to analyze the effect of the inputs modulation, the reaction was performed under low steam to methane ratio at a mod-erate temperature and pressure. It was obtained that to achieve process intensification is to operate the process in a periodic way. The main results show that the periodic input functions can improve the performance of the process compared to the optimal steady state operation. Moreover, there is an optimum amplitude of manipulated inputs leads to a maximum of hydrogen recovery. It is noteworthy that the comparison between the predicted performancevia the sinusoidal and the'square ways show that the better'average performance was obtainedwith the square way.
基金supported by the National Key R&D Program of China (Grant no. 2018YFB1502005)the National Natural Science Foundation of China (Grant nos. 51476163 , 51806209 and 81801768)Institute of Electrical Engineering, Chinese Academy of Sciences (No.Y770111CSC)
文摘A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction of SnO2 are large, and suggest CH4 :SnO2 = 2:1 as the feasible reduction condition for achieving high purities of syngas and avoiding vaporization of produced Sn. Subsequently, the amount of H2 and energetic upgrade factors under different oxidation conditions are compared, in which excess water vapor is found beneficial for hydrogen production and fuel energetic upgradation. Moreover, the effect of incom plete recovery of SnO2 on the subsequent cycle is underscored and explained. After accounting for factors such as isothermal operation and cycle stability, CH4 :SnO2 = 2:1 and H2O:Sn = 4:1 are suggested for highest solar-to-fuel efficiency of 46.1% at nonisothermal condition, where the reduction and oxidation temperature are 1400 and 600 K, respectively.
基金supported by the Innovation Practice Training Program of College Students,Chinese Academy of Sciences(Application No.20184000028)the Practical Training Program of Beijing University of Higher Education High-level Talents Cross-cultivation(No.16053225)the National Natural Science Foundation of China(Grant Nos.51476163,51806209 and 81801768).
文摘Inspired by the promising hydrogen production in the solar thermochemical(STC)cycle based on non-stoichiometric oxides and the operation temperature decreasing effect of methane reduction,a high-fuel-selectivity and CH4-introduced solar thermochemical cycle based on MoO2/Mo is studied.By performing HSC simulations,the energy upgradation and energy conversion potential under isothermal and non-isothermal operating conditions are compared.In the reduction step,MoO2:CH4=2 and 1020 K<Tred<1600 K are found to be most favorable for syngas selectivity and methane conversion.Compared to the STC cycle without CH4,the introduction of methane yields a much higher hydrogen production,especially at the lower temperature range and atmospheric pressure.In the oxidation step,a moderately excessive water is beneficial for energy conversion whether in isothermal or non-isothermal operations,especially at H2O:Mo=4.In the whole STC cycle,the maximum non-isothermal and isothermal efficiency can reach 0.417 and 0.391 respectively.In addition,the predicted efficiency of the second cycle is also as high as 0.454 at Tred=1200 K and Toxi=400 K,indicating that MoO2 could be a new and potential candidate for obtaining solar fuel by methane reduction.
文摘The effects of CO2 on the partial oxidation of heptane for hydrogen generation have been studied. Based on the experimental results and thermodynamic equilibrium calculations, the validity of CO2 addition to weaken the hot spots, and the feasibility of the autothermal operation are discussed.
文摘This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrogenation process in the China's Mainland.