空间变化PSF(Space-variant Point Spread Function,SVPSF)图像,即物空间各点的退化随位置的改变而改变的图像,由于其复原技术涉及到多个甚至海量PSF的提取、存储和运算,相对于空间不变PSF(Space-Invariant Point Spread Function,SIPSF...空间变化PSF(Space-variant Point Spread Function,SVPSF)图像,即物空间各点的退化随位置的改变而改变的图像,由于其复原技术涉及到多个甚至海量PSF的提取、存储和运算,相对于空间不变PSF(Space-Invariant Point Spread Function,SIPSF)图像复原要困难得多。目前处理此类图像的主要方法包括空间坐标转换法,等晕区分块复原法,以减少数据存储量,降低计算量,提高收敛速度为目标的直接复原法等。本文回顾了这一课题的研究历史,对目前的研究工作进行了分析和总结,介绍了本实验室提出的结合GRM(Gradient Ringing Metric)评价算法的总变分最小化图像分块复原法,并提出了未来工作关注重点的展望。展开更多
文摘空间变化PSF(Space-variant Point Spread Function,SVPSF)图像,即物空间各点的退化随位置的改变而改变的图像,由于其复原技术涉及到多个甚至海量PSF的提取、存储和运算,相对于空间不变PSF(Space-Invariant Point Spread Function,SIPSF)图像复原要困难得多。目前处理此类图像的主要方法包括空间坐标转换法,等晕区分块复原法,以减少数据存储量,降低计算量,提高收敛速度为目标的直接复原法等。本文回顾了这一课题的研究历史,对目前的研究工作进行了分析和总结,介绍了本实验室提出的结合GRM(Gradient Ringing Metric)评价算法的总变分最小化图像分块复原法,并提出了未来工作关注重点的展望。