In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Comp...In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.展开更多
Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate ...Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.展开更多
The development of multilayer composite membranes for CO_2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including...The development of multilayer composite membranes for CO_2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO_2 separation performance in the past 15-20 years.In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO_2/CH_4 separation,CO_2/N_2 and CO_2/H_2 separation were summarized with detailed data, and challenges facing for the CO_2 separation using composite membranes,such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented.展开更多
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve...Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.展开更多
This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)eth...This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).展开更多
Poly (N,N-dimethylaminoethyl methacrylate)-poly (ethylene glycol methyl ether methacrylate) (PDMAEMA-PEGMEMA) and cesium fluoride (CsF) were blended and used as the separation material of composite membranes.H...Poly (N,N-dimethylaminoethyl methacrylate)-poly (ethylene glycol methyl ether methacrylate) (PDMAEMA-PEGMEMA) and cesium fluoride (CsF) were blended and used as the separation material of composite membranes.Hollow fiber composite membranes were fabricated by coating the blend on polysulfone (PSf) hollow fiber substrate.Introduction of fluorine ion improved the separation performance of the membrane.The concentration of coating solution was adjusted to obtain a membrane with high permeance.The composite membrane showed good performance with the CO2 permeance of 30.4 GPU (1 GPU=10-6 cm3 (STP)/(cm 2 s cmHg)),and selectivities to CO2/N2,CO2/CH4,CO2/H2 and O2/N2 of 47.2,37.6,1.75 and 4.70,respectively.Potassium fluoride (KF),due to its low cost,was also used as a substitute of CsF to prepare composite membrane and the permeation data showed that CsF can be replaced by KF.The effect of operating temperature on the permeation properties of the composite membrane was also investigated.展开更多
MoS2/γ-Al2O3 ceramic composite membrane is successfully synthesized by the sol-gel method based on the inorganic salt route. The aluminum hydrate sol derived from the inorganic salt Al(NO3)3, whose transparence and ...MoS2/γ-Al2O3 ceramic composite membrane is successfully synthesized by the sol-gel method based on the inorganic salt route. The aluminum hydrate sol derived from the inorganic salt Al(NO3)3, whose transparence and viscosity are 97% and 1.2 × 10-3 Pa. s, respectively, can be formed through adjusting the ratio of the peptizing agent H+ to Al3+ to 0.3. The aluminum hydrate gel at 110℃ is amorphous in structure and is heat-treated in air at 800℃ to form γ-Al2O3. The precursor derived from the mixture solution of ammonium molybdate, thioacetamide and a reducing agent, can be transformed into crystal MoS2 under reducing condition at 800℃. MoS2/γ-Al2O3 composite membrane is an organic whole and bps no gradation from MoS2 layer to γ-Al2O3 Iayer. The separation factor a H2/H2S through the MoS2/γ-Al2O3 composite membrane increase with rising temperature and a H2/H2S at 600℃ is 4.45 higher than the theoretical separation factor produced by the ideal Knudsen diffusion.展开更多
Three phase PebaxMH 1657/PEG-ran-PPG/CuBTC(polymer/liquid/solid) was successfully deposited as a selective layer on a porous Polysulfone(PSF) support. In fact, the beneficial properties of PEG(high selectivity) ...Three phase PebaxMH 1657/PEG-ran-PPG/CuBTC(polymer/liquid/solid) was successfully deposited as a selective layer on a porous Polysulfone(PSF) support. In fact, the beneficial properties of PEG(high selectivity) with those of PPG(high permeability, amorphous) have been combined with superior properties of mixed matrix membrane(MMMs). The membranes were characterized by DSC, TGA and SEM, while CuBTC was characterized by COand CHadsorption test. Statistically based experimental design(central composite design, CCD) was applied to analyze and optimize the effect of PEG-ran-PPG(10–50 wt%) and CuBTC(0–20 wt%) mass contents on the COpermeance and CO/CHideal selectivity. Based on the regression coefficients of the obtained models, the COpermeance was notably influenced by PEG-ran-PPG,while CuBTC has the most significant effect on the CO/CHideal selectivity. Under the optimum conditions(PEG-ran-PPG: 32.76 wt% and CuBTC: 20 wt%), nearly 620% increase in the COpermeance and43% enhancement in the CO/CHideal selectivity was observed compared to the neat Pebax. The effect of pressure(3, 9 and 15 bar) on the pure and mixed gas separation performance of the composite membranes was also investigated. The high solubility of COin the membranes resulted in the enhancement of COpermeability with increase in gas pressure.展开更多
TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by...TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation.展开更多
It is highly desired to develop efficient photocatalysts with recycling property for practical application to degrade toxic pollutants.Herein,nanosheet-assembled NiFe_(2)O_(4)microspheres with commendable activity are...It is highly desired to develop efficient photocatalysts with recycling property for practical application to degrade toxic pollutants.Herein,nanosheet-assembled NiFe_(2)O_(4)microspheres with commendable activity are successfully synthesized by a facile solvothermal reaction with NH4F as the modifier,and their photoactivities are further improved by coupling with NiO through an in situ growth process.The optimized nickel oxide(NiO)/nickel ferrite(NiFe_(2)O_(4))microsphere composite(5NiO/NFO-4)exhibits a satisfactory photocatalytic activity for 2,4-dichlorophenol(2,4-DCP)degradation under visible-light irradiation,which is attributed to its wide visible-light response,well-designed hierarchical structure and enhanced charge transfer and separation by coupling NiO as a high-level energy platform to accept electrons.Moreover,it is found that the NiO/NiFe_(2)O_(4)microsphere photocatalysts can be easily collected and recycled owing to the distinctive magnetic properties.This work provides a feasible route to rational design visible-light-driven photocatalysts with high-activity for environmental remediation and purification with good recyclability.展开更多
Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes ...Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized. Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eight methods including silane coupling, Grignard treatment, incorporation of additive, grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application, mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixed matrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.展开更多
基金Supported by the funding from "135" Projects Fund of CAS-QIBEBT Director Innovation FoundationThink-Tank Mutual Fund of Qingdao Energy Storage Industry Scientific Research+3 种基金Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technologythe Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010105)National Natural Science Foundation of China(51502319)Shandong Provincial Natural Science Foundation(ZR2016BQ18)
文摘In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20990222) and the Natural Science Foundation of Jiangsu Province (BK2009021, SBK200930313).
文摘Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.
基金supported by the Research Council of Norway through the CLIMIT program(MCIL-CO_2 project,215732)the European Union Seventh Framework Programme(FP7/2007-2013)in HiPerCap project under grant agreement n°608555
文摘The development of multilayer composite membranes for CO_2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO_2 separation performance in the past 15-20 years.In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO_2/CH_4 separation,CO_2/N_2 and CO_2/H_2 separation were summarized with detailed data, and challenges facing for the CO_2 separation using composite membranes,such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented.
基金Supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIP)(No.CRC-15-07-KIER)
文摘Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.
基金Supported by the National Natural Science Foundation of China(20906047)the State Key Laboratory of Chemical Engineering(SKL-ChE-09A01)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)
文摘This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).
基金supported by the Chinese Ministry of Science and Technology(973 Program,No. 2009CB623405)the National Natural Science Foundation of China(NSFC program,20706051 and 20836006)
文摘Poly (N,N-dimethylaminoethyl methacrylate)-poly (ethylene glycol methyl ether methacrylate) (PDMAEMA-PEGMEMA) and cesium fluoride (CsF) were blended and used as the separation material of composite membranes.Hollow fiber composite membranes were fabricated by coating the blend on polysulfone (PSf) hollow fiber substrate.Introduction of fluorine ion improved the separation performance of the membrane.The concentration of coating solution was adjusted to obtain a membrane with high permeance.The composite membrane showed good performance with the CO2 permeance of 30.4 GPU (1 GPU=10-6 cm3 (STP)/(cm 2 s cmHg)),and selectivities to CO2/N2,CO2/CH4,CO2/H2 and O2/N2 of 47.2,37.6,1.75 and 4.70,respectively.Potassium fluoride (KF),due to its low cost,was also used as a substitute of CsF to prepare composite membrane and the permeation data showed that CsF can be replaced by KF.The effect of operating temperature on the permeation properties of the composite membrane was also investigated.
文摘MoS2/γ-Al2O3 ceramic composite membrane is successfully synthesized by the sol-gel method based on the inorganic salt route. The aluminum hydrate sol derived from the inorganic salt Al(NO3)3, whose transparence and viscosity are 97% and 1.2 × 10-3 Pa. s, respectively, can be formed through adjusting the ratio of the peptizing agent H+ to Al3+ to 0.3. The aluminum hydrate gel at 110℃ is amorphous in structure and is heat-treated in air at 800℃ to form γ-Al2O3. The precursor derived from the mixture solution of ammonium molybdate, thioacetamide and a reducing agent, can be transformed into crystal MoS2 under reducing condition at 800℃. MoS2/γ-Al2O3 composite membrane is an organic whole and bps no gradation from MoS2 layer to γ-Al2O3 Iayer. The separation factor a H2/H2S through the MoS2/γ-Al2O3 composite membrane increase with rising temperature and a H2/H2S at 600℃ is 4.45 higher than the theoretical separation factor produced by the ideal Knudsen diffusion.
文摘Three phase PebaxMH 1657/PEG-ran-PPG/CuBTC(polymer/liquid/solid) was successfully deposited as a selective layer on a porous Polysulfone(PSF) support. In fact, the beneficial properties of PEG(high selectivity) with those of PPG(high permeability, amorphous) have been combined with superior properties of mixed matrix membrane(MMMs). The membranes were characterized by DSC, TGA and SEM, while CuBTC was characterized by COand CHadsorption test. Statistically based experimental design(central composite design, CCD) was applied to analyze and optimize the effect of PEG-ran-PPG(10–50 wt%) and CuBTC(0–20 wt%) mass contents on the COpermeance and CO/CHideal selectivity. Based on the regression coefficients of the obtained models, the COpermeance was notably influenced by PEG-ran-PPG,while CuBTC has the most significant effect on the CO/CHideal selectivity. Under the optimum conditions(PEG-ran-PPG: 32.76 wt% and CuBTC: 20 wt%), nearly 620% increase in the COpermeance and43% enhancement in the CO/CHideal selectivity was observed compared to the neat Pebax. The effect of pressure(3, 9 and 15 bar) on the pure and mixed gas separation performance of the composite membranes was also investigated. The high solubility of COin the membranes resulted in the enhancement of COpermeability with increase in gas pressure.
文摘TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation.
基金financially supported by the National Natural Science Foundation of China(No.U2102211)China Postdoctoral Science Foundation(No.2022M721069)+1 种基金Postdoctoral Science Foundation of Heilongjiang Province(No.LBHZ22034)the Basic Scientific Research Operating Expenses in colleges and universities of Heilongjiang Province(No.2021-KYYWF-0008)。
文摘It is highly desired to develop efficient photocatalysts with recycling property for practical application to degrade toxic pollutants.Herein,nanosheet-assembled NiFe_(2)O_(4)microspheres with commendable activity are successfully synthesized by a facile solvothermal reaction with NH4F as the modifier,and their photoactivities are further improved by coupling with NiO through an in situ growth process.The optimized nickel oxide(NiO)/nickel ferrite(NiFe_(2)O_(4))microsphere composite(5NiO/NFO-4)exhibits a satisfactory photocatalytic activity for 2,4-dichlorophenol(2,4-DCP)degradation under visible-light irradiation,which is attributed to its wide visible-light response,well-designed hierarchical structure and enhanced charge transfer and separation by coupling NiO as a high-level energy platform to accept electrons.Moreover,it is found that the NiO/NiFe_(2)O_(4)microsphere photocatalysts can be easily collected and recycled owing to the distinctive magnetic properties.This work provides a feasible route to rational design visible-light-driven photocatalysts with high-activity for environmental remediation and purification with good recyclability.
基金Supported by the National Natural Science Foundation of China(21436009)the Program of Introducing Talents of Discipline to Universities(B06006)
文摘Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized. Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eight methods including silane coupling, Grignard treatment, incorporation of additive, grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application, mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixed matrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.