期刊文献+
共找到102,511篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Ellipsoidal Particle Shape on Tribological Properties of Lubricants Containing Nanoparticles
1
作者 Ling Pan Zhi Li +1 位作者 Yunhui Chen Guobin Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期231-242,共12页
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t... Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data. 展开更多
关键词 Molecular dynamics simulation Nanoparticle additives Ellipsoidal particles Tribological properties
下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
2
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
下载PDF
基于PSO−ELM的综采工作面液压支架姿态监测方法
3
作者 李磊 许春雨 +5 位作者 宋建成 田慕琴 宋单阳 张杰 郝振杰 马锐 《工矿自动化》 CSCD 北大核心 2024年第8期14-19,共6页
针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液... 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.4208°减少到0.0580°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。 展开更多
关键词 液压支架 顶梁俯仰角 姿态监测 误差补偿 粒子群优化 极限学习机 pso−ELM
下载PDF
基于改进PSO的无人机精细化自主巡检航迹布设优化 被引量:1
4
作者 程玮 杨智玲 《长春大学学报》 2024年第2期8-14,共7页
提出基于改进PSO的无人机精细化自主巡检航迹布设优化。结合波束法测量地面像控点坐标,通过结构矩阵描述平面误差细化值,完成像控点的布设。采用改进PSO算法计算航迹子路径的变更代价,得到新的路径点,由此实现无人机精细化自主巡检航迹... 提出基于改进PSO的无人机精细化自主巡检航迹布设优化。结合波束法测量地面像控点坐标,通过结构矩阵描述平面误差细化值,完成像控点的布设。采用改进PSO算法计算航迹子路径的变更代价,得到新的路径点,由此实现无人机精细化自主巡检航迹布设优化。实验结果表明,所提方法的无人机精细化自主巡检航迹布设时间仅为39.4 min,说明所提方法能够有效提高无人机精细化自主巡检航迹布设效率,精细化自主巡检航迹布设优化效果更好。 展开更多
关键词 改进pso 无人机 精细化自主巡检 航迹布设优化
下载PDF
基于PSO-LSTM的重载铁路车轨桥系统随机振动响应预测方法
5
作者 毛建锋 李铮 +2 位作者 伍军 余志武 胡连军 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3661-3671,共11页
在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基... 在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基于粒子群优化(Particle Swarm Optimization,PSO)长短期记忆(Long Short-term Memory,LSTM)神经网络模型的重载车桥系统随机振动响应预测方法。该方法以车桥随机参数与轨道随机不平顺激励为输入,以桥梁动力响应为输出构造代理模型。首先,基于商业软件MATLAB平台构建PSO-LSTM网络模型;其次,通过建立的车-轨-桥系统随机振动分析模型计算初始样本集对应的随机动态响应,并进行模型训练,同时利用PSO算法优化LSTM结构参数;最后,使用训练好的PSO-LSTM模型对桥梁动态响应进行预测。为了验证本算法的优越性和鲁棒性,以朔黄重载铁路实测数据为例,对比本算法与BP(Back Propagation)神经网络、GRU(Gated Recurrent Unit)神经网络和LSTM神经网络的预测效率,并讨论不同车速下的预测情况,开展本模型与实测数据及有限元分析数据的对比分析。研究结果表明:在PSO优化下,LSTM模型预测结果得到一定的改善,PSO-LSTM模型拟合相关性系数可以达到0.97,其他评价误差值也均小于BP神经网络、GRU神经网络模型,本文模型可更高效准确地预测桥梁随机动力响应,可为进一步发展车-轨-桥系统随机振动响应预测理论提供技术支持。 展开更多
关键词 随机振动 响应预测 pso算法 LSTM神经网络 车轨桥系统
下载PDF
建筑结构钢板热轧轧机DBN-PSO振动预报及应用
6
作者 王莹 马晓力 王强 《机械设计与制造》 北大核心 2024年第6期159-162,169,共5页
利用实时监测数据(Real-Time Monitoring Data,RMD)参数分析轧机振动状态,综合运用深度置信网络(Deep Belief Networks,DBN)与粒子群(Particle Swarm Optimization,PSO)算法构建轧机振动仿真模型,实现RMD参数的深度挖掘,并达到轧机振动... 利用实时监测数据(Real-Time Monitoring Data,RMD)参数分析轧机振动状态,综合运用深度置信网络(Deep Belief Networks,DBN)与粒子群(Particle Swarm Optimization,PSO)算法构建轧机振动仿真模型,实现RMD参数的深度挖掘,并达到轧机振动的预报效果。通过融合处理能够获得非常接近实际振动过程的预测数据,具备优异预测能力。结合现场测试的初始数据预测误差在3.5%范围内,跟轧机振动情况相符。当轧制速率变慢后,振动加速度出现了降低结果;入口张力对轧机的振动加速度具有反向作用;轧机振动加速度相对出口张力表现为正相关特点;以不同宽度的轧件进行测试发现轧机振动加速度保持基本恒定的状态。该研究对提高热轧轧机运行稳定性,对保证建筑结构钢板成形精度具有很好的指导意义,可以拓宽到其它的成形设备优化领域。 展开更多
关键词 热轧 钢板 轧机振动 振动预报 DBN算法 pso算法
下载PDF
基于PSO的电气设备绝缘故障诊断系统设计
7
作者 贾俊青 武文丽 +2 位作者 蔡文超 杨洋 梁帅 《电子设计工程》 2024年第1期77-81,共5页
电气设备一旦发生绝缘故障,其运行状态的平稳性会急剧下降。为了解决该类问题,基于PSO设计了一种电气设备绝缘故障诊断系统。系统硬件由传感器、核心处理器和通讯器组成,传感器模块内部包含定性传感器与定量传感器,并将WQA427J524NC核... 电气设备一旦发生绝缘故障,其运行状态的平稳性会急剧下降。为了解决该类问题,基于PSO设计了一种电气设备绝缘故障诊断系统。系统硬件由传感器、核心处理器和通讯器组成,传感器模块内部包含定性传感器与定量传感器,并将WQA427J524NC核心处理器作为中央处理器。分解高中低频三个波段的绝缘故障信息,确定特征矢量后,建立故障信息提取程序。利用PSO优化实现信息更新,通过提取数据内部有效信息建立设备故障诊断程序。实验结果表明,该系统对单一故障检测准确率高达99%,对复合故障的检测准确率达到95%,具有较好的诊断能力。 展开更多
关键词 pso 电气设备 绝缘故障 故障诊断
下载PDF
基于改进 PSO-BPNN 的拖拉机液压油品质监测
8
作者 李仲兴 朱方喜 +1 位作者 刘炳晨 郗少华 《中国农机化学报》 北大核心 2024年第10期140-146,共7页
为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉... 为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉机液压油品质监测试验装置,并依据试验装置采集与监测液压油粘度、介电常数和温度参数。然后,设计并搭建一种基于改进PSO-BPNN的拖拉机液压油品质监测模型,该模型利用正弦调整惯性权重的PSO算法优化BPNN的权值和阈值初始值,提高模型收敛效率。最后,为验证基于改进PSO-BPNN的液压油品质监测方法的可行性,与基于传统BPNN、标准PSO-BPNN的拖拉机液压油品质监测模型进行对比。结果表明,基于改进PSO-BPNN的拖拉机液压油品质监测方法具有较快的收敛速度,监测正确率达到97.78%,为优化拖拉机液压油品质监测方法提供参考。 展开更多
关键词 拖拉机 液压油品质 改进pso算法 BP神经网络
下载PDF
基于PSO-SVM的Φ-OTDR系统模式识别研究
9
作者 朱宗玖 王宁 《科学技术与工程》 北大核心 2024年第12期5023-5029,共7页
针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合... 针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合的模式识别算法。首先,对原始信号进行差分处理后提取时域特征,并利用小波包分解方法,通过验证不同分解层数下的事件分类准确率,设定最优分解层数为6层,提取差分信号的能量特征。然后以SVM分类器为基础,利用PSO算法优化SVM分类器参数,提高光纤振动信号识别准确率。最后利用Φ-OTDR事件数据集进行验证,实验结果表明,该模式识别算法达到了95.6%的振动事件分类准确率。 展开更多
关键词 相位敏感光时域反射仪(Φ-OTDR) 小波包分解 粒子群算法(pso) 支持向量机(SVM) 模式识别
下载PDF
一种基于PSO-ELM的低渗透砂岩水淹层测井识别方法
10
作者 杨波 黄长兵 +2 位作者 何岩 李垚银 李路路 《断块油气田》 CAS CSCD 北大核心 2024年第4期645-651,共7页
水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应... 水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应特征分析基础上,提出了一种利用改进粒子群优化算法(Particle Swarm Optimization,PSO)及极限学习机(Extreme Learning Machine,ELM)的水淹层识别方法。首先,利用相关系数优选6个主控因素:RD,RS,GR,SP,DEN,AC。其次,采用改进粒子群算法对极限学习机模型进行参数寻优;最后,利用优化后的模型对研究区水淹层进行预测。结果表明,利用PSO-ELM模型识别水淹层,识别符合率达到91.7%,应用效果优于ELM模型及传统识别图版,为水淹层测井识别提供了新思路。 展开更多
关键词 相关系数 粒子群优化算法 极限学习机 水淹层识别
下载PDF
基于PSO-BP神经网络的分拣机器人视觉反馈跟踪 被引量:1
11
作者 杨静宜 白向伟 《国外电子测量技术》 2024年第1期166-172,共7页
针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信... 针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信息,建立分拣机器人运动学模型,并求解分拣机器人机械臂输出位置和输入位置的误差函数;利用PSO算法优化BP神经网络的权值与偏置;在权值与偏置优化后的BP神经网络内,输入误差函数,预测分拣机器人视觉反馈跟踪控制量;利用预测视觉反馈跟踪控制量,在线调整增量式比例-积分-微分(proportional-integral-derivative,PID)的参数,输出高精度的分拣机器人视觉反馈跟踪控制量,实现分拣机器人视觉反馈跟踪。实验结果表明,该方法可有效视觉反馈跟踪分拣机器人机械臂的关节角;存在干扰情况下,在运行时间为10 s左右时,阶跃响应趋于稳定;有干扰情况下,视觉反馈跟踪的平均误差为0.09 cm,耗时平均值为0.10 ms;无干扰情况下,平均误差为0.03 cm,耗时平均值为0.04 ms。 展开更多
关键词 pso-BP神经网络 分拣机器人 视觉反馈跟踪 运动学模型 误差函数 增量式PID
下载PDF
基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究 被引量:1
12
作者 陈志鼎 李小龙 +2 位作者 李广聪 万山涛 董亿 《水电能源科学》 北大核心 2024年第2期67-71,共5页
为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法... 为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法,建立盾构推力、掘进速度、刀盘转速、刀盘扭矩4种掘进参数为输入集,地层编码为输出集的地层识别模型。工程数据的验证结果表明,该模型在珠三角水资源配置工程数据集上的掘进地层的识别准确率达99.07%,PSO-BP神经网络算法的识别准确率明显高于BP、RF、RBF、CNN等机械学习算法。 展开更多
关键词 泥水平衡盾构机 掘进参数 地层识别 pso-BP神经网络
下载PDF
基于PSO-PLS煤泥浮选加药量预测模型
13
作者 刘海增 李玉娇 徐昊 《化学工程与技术》 2024年第4期326-343,共18页
煤泥浮选药剂添加量的精确控制对浮选效果至关重要,是智能浮选的重要因素,也是近几年浮选智能科研工作者的研究课题。药剂量添加不当会导致浮选精煤灰分存在较大波动。影响浮选药剂添加量的因素众多,本文考虑入料浓度、入料流量、补水... 煤泥浮选药剂添加量的精确控制对浮选效果至关重要,是智能浮选的重要因素,也是近几年浮选智能科研工作者的研究课题。药剂量添加不当会导致浮选精煤灰分存在较大波动。影响浮选药剂添加量的因素众多,本文考虑入料浓度、入料流量、补水量、精煤灰分和尾煤灰分这五种因素对煤泥浮选药剂添加量的影响,提出了一种基于粒子群优化(PSO)偏最小二乘(PLS)算法的煤泥浮选起泡剂和捕收剂加药量预测模型。通过对比PCA、PLS和PSO-PLS三种算法的预测效果,发现PSO-PLS模型在预测精度和稳健性上表现优异,均方差、均方根误差、平均绝对百分比误差显著低于前两者,捕收剂预测R2值达到0.7863,起泡剂预测R2值达到0.8320,表明其拟合效果良好。实验证明,PSO-PLS算法能够准确预测浮选药剂添加量,有助于实现选煤厂浮选加药过程的智能化,为进一步选煤厂智能化建设提供了技术支持。 展开更多
关键词 浮选 起泡剂 捕收剂 pso PLS
下载PDF
基于PSO-Elman神经网络的井底风温预测模型
14
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 ELMAN神经网络 pso-Elman
下载PDF
基于EMD-PSO-ARIMA模型的农产品价格预测
15
作者 尚俊平 李文浩 +1 位作者 席磊 刘合兵 《湖北农业科学》 2024年第8期121-125,163,共6页
针对农产品价格数据的非线性特点,提出基于EMD-PSO-ARIMA模型的农产品价格预测模型。首先利用EMD算法消除价格数据的不平稳性,其次应用PSO算法优化ARIMA模型的滞后参数,并对原始数据分解后的序列进行预测,最后对多个预测值进行累加得到... 针对农产品价格数据的非线性特点,提出基于EMD-PSO-ARIMA模型的农产品价格预测模型。首先利用EMD算法消除价格数据的不平稳性,其次应用PSO算法优化ARIMA模型的滞后参数,并对原始数据分解后的序列进行预测,最后对多个预测值进行累加得到最终结果。以河南省某农贸市场2004年1月至2021年12月鳞茎类作物(以大蒜为例)、根茎类作物(以马铃薯为例)及叶菜类作物(以白菜为例)的价格数据为研究对象进行实证研究。对大蒜、马铃薯、白菜价格进行预测,EMD-PSO-ARIMA模型的RMSE分别为0.0295、0.0168、0.0669,MAE分别为0.0274、0.0189、0.0598,MAPE分别为0.32%、0.64%、2.54%;与ARIAM、PSO-ARIMA、EMD-ARIMA模型相比,EMD-PSO-ARIMA模型的3个评价指标均有不同程度的降低,模型预测精度最高。EMD-PSO-ARIMA模型能够有效对3种农产品的价格做出精准预测,在一定程度上提高了模型预测性能,能够为农业生产者、经营者、政府提供决策支持,维护农业市场的稳定。 展开更多
关键词 EMD-pso-ARIMA模型 农产品价格 预测
下载PDF
基于粗糙集理论与PCA-APSO-SVM的沥青路面使用性能预测
16
作者 李海莲 杨斯媛 +2 位作者 祁增涛 刘忠磊 李清华 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期10-17,共8页
针对传统沥青路面使用性能预测精度较低的问题,建立了基于粗糙集理论(rough set,RS)与主成分分析法(principal compoent analysis,PCA)-自适应粒子群算法(adaptive particle swarm optimization,APSO)-支持向量机(support vector machin... 针对传统沥青路面使用性能预测精度较低的问题,建立了基于粗糙集理论(rough set,RS)与主成分分析法(principal compoent analysis,PCA)-自适应粒子群算法(adaptive particle swarm optimization,APSO)-支持向量机(support vector machine,SVM)的沥青路面使用性能预测模型。基于沥青路面的时序指标与影响因素指标,建立了11个初始预测指标(包括前3年的路面使用性能、当量轴次、路龄、养护性质、坑槽率、修补率、年降水量、平均气温、日照时数);通过RS属性约减筛选出9个核心指标;利用PCA提取4个主成分,得到了基于4个主成分的数据集;将APSO引入到SVM中,对数据集进行训练,并优化了SVM模型参数;建立了路面使用性能的PCA-APSO-SVM预测模型,并以G6京藏高速甘肃境内某段道路为例,对路面使用性能进行预测。研究结果表明:PCA-APSO-SVM模型预测精度较PCA-PSO-SVM、APSO-SVM、PSO-SVM有较大提高,预测结果与实际情况更加符合,能为路面养护决策提供相关参考。 展开更多
关键词 道路工程 路面使用性能预测 粗糙集理论 主成分分析 粒子群算法 支持向量机
下载PDF
基于融合影响因素PSO-Prophet模型的农产品价格预测
17
作者 刘合兵 王一飞 +2 位作者 王垒 席磊 尚俊平 《湖北农业科学》 2024年第1期185-189,共5页
为了提高价格预测的准确度,在Prophet模型中融入了消费者物价指数(CPI)和经济政策不确定性指数(EPU)等影响因素,并使用粒子群算法优化参数。利用国际大蒜贸易网中的日价格数据,将该方法应用于山东省大蒜的价格预测。结果表明,融合影响... 为了提高价格预测的准确度,在Prophet模型中融入了消费者物价指数(CPI)和经济政策不确定性指数(EPU)等影响因素,并使用粒子群算法优化参数。利用国际大蒜贸易网中的日价格数据,将该方法应用于山东省大蒜的价格预测。结果表明,融合影响因素的PSO-Prophet模型大蒜价格预测结果的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)比Prophet模型分别降低了82.88%、82.86%和77.49%。融合影响因素的PSO-Prophet模型可以有效提高预测精度。 展开更多
关键词 价格预测 融合影响因素 Prophet模型 pso-Prophet模型 农产品
下载PDF
基于改进PSO-Elman的液晶显示器颜色特性化
18
作者 孙士明 倪潇 +1 位作者 李媛媛 高绍姝 《计算机仿真》 2024年第6期274-279,286,共7页
液晶显示器颜色特性化可以实现同一幅图像在不同设备上的准确显示。为解决液晶显示器颜色特性化存在模型建立复杂、模型鲁棒性差导致特性化精度较低的问题,提出基于改进PSO-Elman神经网络的方法建立RGB颜色空间到CIEXYZ颜色空间的转换模... 液晶显示器颜色特性化可以实现同一幅图像在不同设备上的准确显示。为解决液晶显示器颜色特性化存在模型建立复杂、模型鲁棒性差导致特性化精度较低的问题,提出基于改进PSO-Elman神经网络的方法建立RGB颜色空间到CIEXYZ颜色空间的转换模型(ACOPSO-Elman)。首先根据粒子种群规模和粒子位置关系构造惯性权重与学习因子的自适应调节函数提高PSO算法的全局寻优能力和收敛速度,并在寻优过程中添加混沌优化(CO),防止粒子陷入局部最优解,将改进的粒子群算法用于Elman模型参数寻优,解决了Elman模型参数较难选取的问题。通过仿真验证并与BP、Elman神经网络模型比较表明,ACOPSO-Elman模型特性化的平均色差为1.9247ΔE^(*)_(ab),最大色差为5.1252ΔE^(*)_(ab),在特性化精度上取得了较好的效果。 展开更多
关键词 神经网络 液晶显示器 颜色特性化 粒子群算法 自适应调节函数
下载PDF
基于PSO-Kriging算法的三维地质建模技术研究
19
作者 丁自伟 刘江 +2 位作者 王小勇 常毛毛 廖敬龙 《煤炭工程》 北大核心 2024年第10期82-89,共8页
三维地质模型的构建对于理解和预测地下结构至关重要。地质钻孔数据能够反映岩体空间分布和地质构造特征,本研究以小保当一号煤矿11盘区内的23个地质钻孔数据为基础,采用添加虚拟地层的方法解决了地层缺失与地层重复现象,构建共计27层... 三维地质模型的构建对于理解和预测地下结构至关重要。地质钻孔数据能够反映岩体空间分布和地质构造特征,本研究以小保当一号煤矿11盘区内的23个地质钻孔数据为基础,采用添加虚拟地层的方法解决了地层缺失与地层重复现象,构建共计27层地层的三维地质模型以及二维剖面模型。此外,针对传统的克里金方法在处理复杂地质数据参数选择困难的问题,采用粒子群算法对传统克里金插值方法中的块金值(C 0)、偏基台值(C)和变程(a)三个关键参数进行寻优,从而克服普通克里金插值参数选择的主观性和不确定性,采用实际验证法选取了研究区内四个钻孔来对比插值结果,结果表明经过PSO优化的Kriging算法在X3-1、X3-2、K3-4、K3-5四个钻孔的RMSE值分别降低至1.184、1.267、1.606、1.560,相比于Kriging的RMSE平均降低了31%,且PSO-Kriging算法在四个钻孔处对2-2煤层的插值结果与实际值相比较误差分别为1.00 m、0.01 m、0.11 m和0.03 m,比Kriging插值结果更接近实际值,表明了所提方法的有效性和优越性。 展开更多
关键词 克里金插值 粒子群算法 三维地质建模 地质统计学 空间插值
下载PDF
钻孔瞬变电磁法扫描探测RCQPSO-LMO组合算法2.5D反演 被引量:3
20
作者 程久龙 焦俊俊 +1 位作者 陈志 董毅 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第2期781-792,共12页
利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描... 利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描探测2.5D反演的数据解译方法,首先针对随机性反演算法时效性低,易陷入局部最优解,而确定性反演算法依赖初始模型的问题,提出了组合策略的量子粒子群优化算法用来随机搜索最优初始模型.在此基础上,利用Levenberg-Marquarat方法求解Occam反演的目标函数,形成了RCQPSO-LMO组合算法进行2.5D反演,通过对比组合算法和单一算法,验证了组合算法具有更精确的反演结果.其次结合屏蔽条件下扫描探测,对比分析了有无屏蔽的2.5D反演结果,通过设定屏蔽系数对非探测方向信号进行部分压制,可以较好地解决钻孔径向扫描探测中对非探测方向信号部分屏蔽下的反演及成像.最后建立三组理论模型进行组合算法2.5D反演,结果表明:组合算法反演结果与理论模型的一致性较好,对低阻异常体的反演精度较高,验证了组合算法对钻孔孔壁外围低阻异常体具有较高的反演精度和分辨能力. 展开更多
关键词 钻孔瞬变电磁法 扫描探测 量子粒子群优化算法 组合算法 2.5D反演
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部