期刊文献+
共找到1,681篇文章
< 1 2 85 >
每页显示 20 50 100
基于PSO-SVM的点焊接头拉剪强度分类分析
1
作者 吴刚 陈天 +1 位作者 余靓辉 柳志鹏 《焊接学报》 EI CAS CSCD 北大核心 2024年第9期120-128,共9页
点焊是汽车零部件的主要连接方式之一,点焊接头的拉剪强度是评价点焊质量的重要因素,论文在制备大量点焊试样的基础上,对各试样的焊点进行超声信号检测,并运用信号处理获得时域、频域和小波包特征值,随后对点焊试样在拉剪试验中的失效... 点焊是汽车零部件的主要连接方式之一,点焊接头的拉剪强度是评价点焊质量的重要因素,论文在制备大量点焊试样的基础上,对各试样的焊点进行超声信号检测,并运用信号处理获得时域、频域和小波包特征值,随后对点焊试样在拉剪试验中的失效形式进行分析,建立点焊接头拉剪强度的分级标准.根据试验数据设计了BP(back-propagation)神经网络和基于粒子群优化支持向量机(particle swarm optimization support vector machine,PSO-SVM)的神经网络分类器,最后将试样的超声信号特征值作为输入参数,比较两种神经网络模型对点焊试样拉剪强度分类的准确率.试验结果表明,结合9个超声信号特征值的PSO-SVM神经网络具有最高的点焊强度分类准确率. 展开更多
关键词 点焊 超声检测 拉剪强度 BP神经网络 pso-svm
下载PDF
Alternative Method of Constructing Granular Neural Networks
2
作者 Yushan Yin Witold Pedrycz Zhiwu Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期623-650,共28页
Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The a... Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance. 展开更多
关键词 Granular neural network granular connection interval analysis triangular fuzzy numbers particle swarm optimization(pso)
下载PDF
Multi-Source Underwater DOA Estimation Using PSO-BP Neural Network Based on High-Order Cumulant Optimization
3
作者 Haihua Chen Jingyao Zhang +3 位作者 Bin Jiang Xuerong Cui Rongrong Zhou Yucheng Zhang 《China Communications》 SCIE CSCD 2023年第12期212-229,共18页
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma... Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm. 展开更多
关键词 gaussian colored noise higher-order cumulant multiple sources particle swarm optimization(pso)algorithm pso-BP neural network
下载PDF
基于PSO-SVM算法的输电线路覆冰舞动预测模型 被引量:5
4
作者 邹红波 宋家乐 +3 位作者 刘媛 段治丰 张馨煜 宋璐 《振动与冲击》 EI CSCD 北大核心 2023年第3期280-286,共7页
输电线路舞动往往会导致金具磨损、闪络、断线等电力事故,对电力系统的安全具有很大的负面影响。利用ANSYS软件模拟不同档距、风速等状态下覆冰四分裂导线在平均风与脉动风作用下的动态响应,进而根据模拟获得的数据集和PSO-SVM(particle... 输电线路舞动往往会导致金具磨损、闪络、断线等电力事故,对电力系统的安全具有很大的负面影响。利用ANSYS软件模拟不同档距、风速等状态下覆冰四分裂导线在平均风与脉动风作用下的动态响应,进而根据模拟获得的数据集和PSO-SVM(particle swarm optimization-support vector machines)算法构建了四分裂导线覆冰舞动预警模型,将档距、风速、初始风攻角作为模型的输入,覆冰导线是否舞动作为输出。同时,为验证该预测模型的实用性及有效性,将PSO-SVM模型与其他智能算法如BP(back propagation)、支持向量机(support vector machine, SVM)、遗传算法优化支持向量机(genetic algorithm-optimization support vector, GA-SVM)模型的预测结果进行比较,结果表明PSO-SVM模型的预测结果精度更高,对输电线路覆冰舞动预警具有一定的参考意义。 展开更多
关键词 粒子群优化算法(pso) 神经网络 支持向量机(svm) 导线舞动
下载PDF
基于PSO-BP神经网络的分拣机器人视觉反馈跟踪 被引量:1
5
作者 杨静宜 白向伟 《国外电子测量技术》 2024年第1期166-172,共7页
针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信... 针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信息,建立分拣机器人运动学模型,并求解分拣机器人机械臂输出位置和输入位置的误差函数;利用PSO算法优化BP神经网络的权值与偏置;在权值与偏置优化后的BP神经网络内,输入误差函数,预测分拣机器人视觉反馈跟踪控制量;利用预测视觉反馈跟踪控制量,在线调整增量式比例-积分-微分(proportional-integral-derivative,PID)的参数,输出高精度的分拣机器人视觉反馈跟踪控制量,实现分拣机器人视觉反馈跟踪。实验结果表明,该方法可有效视觉反馈跟踪分拣机器人机械臂的关节角;存在干扰情况下,在运行时间为10 s左右时,阶跃响应趋于稳定;有干扰情况下,视觉反馈跟踪的平均误差为0.09 cm,耗时平均值为0.10 ms;无干扰情况下,平均误差为0.03 cm,耗时平均值为0.04 ms。 展开更多
关键词 pso-BP神经网络 分拣机器人 视觉反馈跟踪 运动学模型 误差函数 增量式PID
下载PDF
基于改进CNN-SVM的井下钻头磨损状态评估研究 被引量:1
6
作者 李玉梅 邓杨林 +3 位作者 李基伟 李乾 杨磊 于丽维 《石油机械》 北大核心 2024年第6期12-19,共8页
现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采... 现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采集的近钻头原始振动数据导入CNN-Softmax模型,通过训练好的CNN模型从近钻头数据中提取主要的特征参数,将提取的稀疏特征向量输入SVM并进行故障分类,利用遗传算法实现SVM参数的优化选择,最后应用t分布随机邻域法近邻嵌入,使其故障特征学习过程可视化,以评估其特征提取能力。采用该算法对钻头磨损的现场试验数据进行了分析。分析结果表明:基于改进CNN-SVM的井下钻头磨损状态评估算法准确率高达98.33%。所得结论可为实现钻头磨损状态的进一步监测提供理论支撑。 展开更多
关键词 钻头磨损状态评估 卷积神经网络 支持向量机 特征提取可视化 平均池化采样
下载PDF
基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究 被引量:1
7
作者 陈志鼎 李小龙 +2 位作者 李广聪 万山涛 董亿 《水电能源科学》 北大核心 2024年第2期67-71,共5页
为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法... 为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法,建立盾构推力、掘进速度、刀盘转速、刀盘扭矩4种掘进参数为输入集,地层编码为输出集的地层识别模型。工程数据的验证结果表明,该模型在珠三角水资源配置工程数据集上的掘进地层的识别准确率达99.07%,PSO-BP神经网络算法的识别准确率明显高于BP、RF、RBF、CNN等机械学习算法。 展开更多
关键词 泥水平衡盾构机 掘进参数 地层识别 pso-BP神经网络
下载PDF
基于PSO-BP神经网络与PSO-SVM的抗乳腺癌药物性质预测 被引量:10
8
作者 许美贤 郑琰 +1 位作者 李炎举 吴伟豪 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第1期51-65,共15页
通过实验筛选研发新药的过程非常缓慢且需耗费大量的人力物力,而利用计算机辅助预测药物的分子性质可极大地节省药物研发时间和成本.因此,为了能够使抗乳腺癌候选药物对抑制ERα具有良好的生物活性和ADMET性质,针对收集到的1 974种化合... 通过实验筛选研发新药的过程非常缓慢且需耗费大量的人力物力,而利用计算机辅助预测药物的分子性质可极大地节省药物研发时间和成本.因此,为了能够使抗乳腺癌候选药物对抑制ERα具有良好的生物活性和ADMET性质,针对收集到的1 974种化合物,首先利用随机森林分类器筛选出前20个对生物活性最具显著影响的分子描述符,并以此和pIC50值作为特征数据建立QSAR模型.其次,基于PSO优化BP神经网络对50个新化合物的生物活性值进行预测,模型拟合度为0.833 7,根均方误差为0.731 5,比优化前的BP神经网络预测值更贴合实际.随后为提高药物研发的成功率,依据已有的ADMET性质数据利用PSO优化SVM构建ADMET分类预测模型,算法交叉验证CV准确率达到94.076 7%,5个指标模型的预测准确率均在79%以上.结果表明,所建立的模型比基准模型的预测性能更好,采用的预测策略是有效的,可为抗乳腺癌药物的研发提供借鉴. 展开更多
关键词 抗乳腺癌药物 生物活性 ADMET性质 粒子群优化算法 BP神经网络 支持向量机
下载PDF
基于PSO-LSTM的重载铁路车轨桥系统随机振动响应预测方法
9
作者 毛建锋 李铮 +2 位作者 伍军 余志武 胡连军 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3661-3671,共11页
在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基... 在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基于粒子群优化(Particle Swarm Optimization,PSO)长短期记忆(Long Short-term Memory,LSTM)神经网络模型的重载车桥系统随机振动响应预测方法。该方法以车桥随机参数与轨道随机不平顺激励为输入,以桥梁动力响应为输出构造代理模型。首先,基于商业软件MATLAB平台构建PSO-LSTM网络模型;其次,通过建立的车-轨-桥系统随机振动分析模型计算初始样本集对应的随机动态响应,并进行模型训练,同时利用PSO算法优化LSTM结构参数;最后,使用训练好的PSO-LSTM模型对桥梁动态响应进行预测。为了验证本算法的优越性和鲁棒性,以朔黄重载铁路实测数据为例,对比本算法与BP(Back Propagation)神经网络、GRU(Gated Recurrent Unit)神经网络和LSTM神经网络的预测效率,并讨论不同车速下的预测情况,开展本模型与实测数据及有限元分析数据的对比分析。研究结果表明:在PSO优化下,LSTM模型预测结果得到一定的改善,PSO-LSTM模型拟合相关性系数可以达到0.97,其他评价误差值也均小于BP神经网络、GRU神经网络模型,本文模型可更高效准确地预测桥梁随机动力响应,可为进一步发展车-轨-桥系统随机振动响应预测理论提供技术支持。 展开更多
关键词 随机振动 响应预测 pso算法 LSTM神经网络 车轨桥系统
下载PDF
基于改进CNN-SVM的动力电池组故障诊断研究
10
作者 廖力 马明东 +1 位作者 常春 姜久春 《电源技术》 CAS 北大核心 2024年第7期1273-1280,共8页
针对卷积神经网络(CNN)在动力电池组故障诊断中容易过拟合和准确度低的问题,提出了一种改进的基于卷积神经网络的锂离子电池故障诊断模型。首先,对CNN网络的结构和参数进行调整和优化,利用小波包变换将故障信息提取到CNN中,然后用支持... 针对卷积神经网络(CNN)在动力电池组故障诊断中容易过拟合和准确度低的问题,提出了一种改进的基于卷积神经网络的锂离子电池故障诊断模型。首先,对CNN网络的结构和参数进行调整和优化,利用小波包变换将故障信息提取到CNN中,然后用支持向量机(SVM)代替CNN中的SoftMax分类器构建CNN-SVM模型,再利用粒子群算法(PSO)对SVM中的超参数进行优化,以得到用于电池组故障诊断的最优模型,最后,通过故障实验对比来验证所提出方法的优越性。实验结果表明,CNN-SVM模型的故障分类准确率可达97%以上,远高于传统深度学习网络,对锂离子电池组的故障诊断具有实际意义。 展开更多
关键词 锂离子电池组 故障诊断 卷积神经网络 支持向量机 pso
下载PDF
基于改进PSO-Elman的液晶显示器颜色特性化
11
作者 孙士明 倪潇 +1 位作者 李媛媛 高绍姝 《计算机仿真》 2024年第6期274-279,286,共7页
液晶显示器颜色特性化可以实现同一幅图像在不同设备上的准确显示。为解决液晶显示器颜色特性化存在模型建立复杂、模型鲁棒性差导致特性化精度较低的问题,提出基于改进PSO-Elman神经网络的方法建立RGB颜色空间到CIEXYZ颜色空间的转换模... 液晶显示器颜色特性化可以实现同一幅图像在不同设备上的准确显示。为解决液晶显示器颜色特性化存在模型建立复杂、模型鲁棒性差导致特性化精度较低的问题,提出基于改进PSO-Elman神经网络的方法建立RGB颜色空间到CIEXYZ颜色空间的转换模型(ACOPSO-Elman)。首先根据粒子种群规模和粒子位置关系构造惯性权重与学习因子的自适应调节函数提高PSO算法的全局寻优能力和收敛速度,并在寻优过程中添加混沌优化(CO),防止粒子陷入局部最优解,将改进的粒子群算法用于Elman模型参数寻优,解决了Elman模型参数较难选取的问题。通过仿真验证并与BP、Elman神经网络模型比较表明,ACOPSO-Elman模型特性化的平均色差为1.9247ΔE^(*)_(ab),最大色差为5.1252ΔE^(*)_(ab),在特性化精度上取得了较好的效果。 展开更多
关键词 神经网络 液晶显示器 颜色特性化 粒子群算法 自适应调节函数
下载PDF
基于PSO-BP的岩性识别方法研究
12
作者 高雅田 杨俊国 《计算机与数字工程》 2024年第4期1119-1124,共6页
近些年来,数据分析、深度学习技术取得了长足的发展,并为社会带来了可观的收益。故利用深度学习手段进行岩性识别也成为了一个研究热点。岩性识别是录井解释的核心业务,准确而有效地预测储层性质对石油勘探工作有着重大意义。为解决传... 近些年来,数据分析、深度学习技术取得了长足的发展,并为社会带来了可观的收益。故利用深度学习手段进行岩性识别也成为了一个研究热点。岩性识别是录井解释的核心业务,准确而有效地预测储层性质对石油勘探工作有着重大意义。为解决传统岩性识别方法成本高、耗时长等缺点。论文利用松辽盆地中若干井的测井数据进行模型研究,提出了一种基于PSO-BP的岩性识别方法。通过对测井源数据进行数据预处理、构建网络识别模型、优化岩性识别模型、评价模型输出结果等步骤,实现基于PSO-BP岩性识别方法。经过反复试验,结果表明采用PSO-BP的岩性识别方法对岩性进行识别的平均准确率可达92.2%,为储层预测工作提供了可靠的支撑。 展开更多
关键词 BP神经网络 粒子群优化算法 岩性识别 数据预处理 KNN 支持向量机
下载PDF
基于改进 PSO-BPNN 的拖拉机液压油品质监测
13
作者 李仲兴 朱方喜 +1 位作者 刘炳晨 郗少华 《中国农机化学报》 北大核心 2024年第10期140-146,共7页
为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉... 为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉机液压油品质监测试验装置,并依据试验装置采集与监测液压油粘度、介电常数和温度参数。然后,设计并搭建一种基于改进PSO-BPNN的拖拉机液压油品质监测模型,该模型利用正弦调整惯性权重的PSO算法优化BPNN的权值和阈值初始值,提高模型收敛效率。最后,为验证基于改进PSO-BPNN的液压油品质监测方法的可行性,与基于传统BPNN、标准PSO-BPNN的拖拉机液压油品质监测模型进行对比。结果表明,基于改进PSO-BPNN的拖拉机液压油品质监测方法具有较快的收敛速度,监测正确率达到97.78%,为优化拖拉机液压油品质监测方法提供参考。 展开更多
关键词 拖拉机 液压油品质 改进pso算法 BP神经网络
下载PDF
基于PSO-Elman神经网络的井底风温预测模型
14
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 ELMAN神经网络 pso-Elman
下载PDF
基于CBAM-CGRU-SVM的Android恶意软件检测方法
15
作者 孙敏 成倩 丁希宁 《计算机应用》 CSCD 北大核心 2024年第5期1539-1545,共7页
随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CG... 随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CGRU-SVM。首先,在CNN中添加卷积块注意力模块(CBAM)以学习更多恶意软件的关键特征;其次,利用GRU进一步提取特征;最后,为了解决图像分类时模型泛化能力不足的问题,使用SVM代替softmax激活函数作为模型的分类函数。实验使用了Malimg公开数据集,该数据集将恶意软件数据图像化作为模型输入。实验结果表明,CBAM-CGRU-SVM模型分类准确率达到94.73%,能够更有效地对恶意软件家族进行分类。 展开更多
关键词 恶意软件 卷积神经网络 卷积块注意力模块 门控循环单元 支持向量机
下载PDF
基于PSO-LSSVM算法的脸型与男西装领型适配性研究
16
作者 周奕涵 徐一诺 +1 位作者 李涛 夏馨 《丝绸》 CAS CSCD 北大核心 2023年第12期92-98,共7页
为研究脸型与领型之间复杂的适配性视觉关系,使消费者能够根据自身脸型轮廓和比例匹配合适的领型,文章以男性脸型与男西服领型为研究对象,先对男性脸型与男西服领型进行特征提取及分类,共划分出12种脸型和20种领型。随后利用三维虚拟试... 为研究脸型与领型之间复杂的适配性视觉关系,使消费者能够根据自身脸型轮廓和比例匹配合适的领型,文章以男性脸型与男西服领型为研究对象,先对男性脸型与男西服领型进行特征提取及分类,共划分出12种脸型和20种领型。随后利用三维虚拟试衣技术建立出240个实验样本,通过主观问卷调研不同脸型与领型组合搭配的视觉效果适配度评价。最后,将脸型和领型的搭配作为模型输入值,主观视觉适配度评价作为模型输出值,并采用PSO-LSSVM算法建立脸型和领型适配度预测模型。结果表明,采用PSO-LSSVM算法的模型均方根误差为0.077 6,平均绝对误差为0.057 3;相对于PSO-RBF神经网络算法,均方根误差降低0.041 1,平均绝对误差降低0.037 6。该预测模型可为消费者线上选购、企业新品精准研发与营销、个性化定制提供一定的参考。 展开更多
关键词 脸型 男西装领型 pso-RBF神经网络 pso-LSsvm算法 适配度预测
下载PDF
基于PSO-PNN与CV-SVM的旋转机械故障诊断研究 被引量:2
17
作者 龚永康 李雯 +3 位作者 喻菲菲 杜灿谊 陈国燕 刘利武 《机电工程》 CAS 北大核心 2023年第9期1395-1402,共8页
不同类型的旋转机械发生故障时会激发出不同特征的振动信号。针对旋转机械故障点位判断难、复合故障判断不准确等问题,构建了概率神经网络(PNN)以及支持向量机(SVM)这两种人工智能模型,并采用该模型对旋转机械进行了故障识别研究。首先... 不同类型的旋转机械发生故障时会激发出不同特征的振动信号。针对旋转机械故障点位判断难、复合故障判断不准确等问题,构建了概率神经网络(PNN)以及支持向量机(SVM)这两种人工智能模型,并采用该模型对旋转机械进行了故障识别研究。首先,采集了研究对象各故障状态下的振动信号,对振动信号的时域和频谱进行了分析,根据振动信号的特征表现,分别将原始振动信号幅值和振动信号特征值作为人工智能模型的输入向量;然后,利用粒子群算法(PSO)对概率神经网络的输入参数进行了优化,利用交叉验证法(CV)对支持向量机的输入参数进行了优化;最后,建立了概率神经网络和支持向量机故障诊断模型,对旋转机械故障进行了诊断,并对比分析了诊断结果。研究结果表明:基于PSO-PNN模型的旋转机械故障识别准确率在97%以上;基于CV-SVM模型的旋转机械故障识别准确率在98%以上;这两种人工智能方法在用于旋转机械故障诊断时具有速度快、准确率高的优点;其中,PSO-PNN方法适用于旋转机械故障实时监测,CV-SVM方法适用于旋转机械复杂故障的识别。 展开更多
关键词 转动机件 粒子群算法 概率神经网络 交叉验证法 支持向量机 故障识别准确率
下载PDF
SVM方法在某多级离心泵故障诊断中的应用 被引量:3
18
作者 李有根 马文生 +1 位作者 李方忠 王庆锋 《机械强度》 CAS CSCD 北大核心 2024年第2期272-280,共9页
针对实际工程中多级离心泵故障样本难获取的现象,通过多级离心泵故障模拟试验台模拟实际产品的碰摩、不对中、不平衡三种典型故障,基于支持向量机(Support Vector Machine,SVM)建立故障诊断模型的方法实现故障的分类。采用集合经验模态... 针对实际工程中多级离心泵故障样本难获取的现象,通过多级离心泵故障模拟试验台模拟实际产品的碰摩、不对中、不平衡三种典型故障,基于支持向量机(Support Vector Machine,SVM)建立故障诊断模型的方法实现故障的分类。采用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)算法提取振动信号的时频域特征,结合时、频域和信息熵特征构造高维特征样本后,以主成分分析(Principal Component Analysis,PCA)优化输入样本质量,实现对故障的高效分类。另外,对比分析SVM和反向传播(Back Propagation,BP)神经网络的分类效果,表明SVM模型分类的效果更好,在多级离心泵的故障诊断中具有良好的适用性。 展开更多
关键词 多级离心泵 支持向量机 BP神经网络 集合经验模态分解 主成分分析
下载PDF
干涉式闭环光纤陀螺仪的PSO-PID控制优化方法 被引量:2
19
作者 刘尚波 丹泽升 +2 位作者 廉保旺 徐金涛 曹辉 《红外与激光工程》 EI CSCD 北大核心 2024年第3期242-253,共12页
控制系统的设计会对响应速度快且应用范围较广的数字干涉式闭环光纤陀螺(ICFOG)动态性能产生影响。通过分析ICFOG的工作原理,推导出闭环离散控制系统,并利用粒子群优化算法(Particle Swarm Optimization,PSO)对传统的PID控制器参数进行... 控制系统的设计会对响应速度快且应用范围较广的数字干涉式闭环光纤陀螺(ICFOG)动态性能产生影响。通过分析ICFOG的工作原理,推导出闭环离散控制系统,并利用粒子群优化算法(Particle Swarm Optimization,PSO)对传统的PID控制器参数进行优化。基于这个优化过程,设计一种新型的PSO-PID复合控制器,以取代传统的PID控制器。通过与其他BP神经网络、模糊控制等方法进行对比凸显该控制方法的优越。通过数字仿真分析显示,跟踪速度相较于BP-PID控制方法提高了1.91倍,相对于PID控制方法提高了3.5倍,相对于F-PID控制方法提高了1.75倍。同时,控制精度相对于BP-PID控制方法提高了46.03%,相对于PID控制方法提高了66.30%,相对于F-PID控制方法提高了45.27%。结果显示,采用PSO-PID控制器能够快速达到控制目标且具有较小的超调量。 展开更多
关键词 干涉式光纤陀螺 小超调量 粒子群优化PID方法 BP神经网络 模糊控制器
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
20
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(pso) Convolutional neural network(CNN)
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部