期刊文献+
共找到1,284篇文章
< 1 2 65 >
每页显示 20 50 100
基于AM-PSO-BP神经网络的打印路径规划
1
作者 李冰 《模具技术》 2024年第1期33-41,共9页
为提高弧焊焊接效果,提出一种基于AM-PSO-BP神经网络的弧焊打印路径规划方法。方法采用基于自适应方差的自适应变异操作(AM)消除粒子群优化算法(PSO)后期迭代效率低的问题,然后利用AM-PSO算法优化BP(back propagation)神经网络的权重和... 为提高弧焊焊接效果,提出一种基于AM-PSO-BP神经网络的弧焊打印路径规划方法。方法采用基于自适应方差的自适应变异操作(AM)消除粒子群优化算法(PSO)后期迭代效率低的问题,然后利用AM-PSO算法优化BP(back propagation)神经网络的权重和阈值,实现BP神经网络参数的优化;最后将AM-PSO-BP神经网络算法对弧焊打印工艺参数进行预测,获取更准确的弧焊打印工艺参数。仿真结果表明:所提方法可精确预测弧焊打印工艺参数,在该工艺参数下,弧焊打印的六边形柱体、圆柱体、正方体预测值与实测值相差较小,且在误差允许范围内,具有较高的准确性。以上方法可为精确弧焊打印提供依据。 展开更多
关键词 弧焊打印 路径规划 pso算法 自适应变异 BP神经网络
下载PDF
应用PSO-RBF神经网络预测太阳能PV/T系统的热、电性能 被引量:2
2
作者 何迪 王聪聪 +4 位作者 陈红兵 孙俊辉 高雪宁 王传岭 马卓越 《可再生能源》 CAS CSCD 北大核心 2024年第4期455-463,共9页
为准确预测太阳能光伏光热(Solar Photovoltaic/Thermal,PV/T)系统的热、电性能,文章利用PSO(Particle Swarm Optimization)算法优化了RBF(Radial Basis Function)神经网络,并基于此方法建立了太阳能PV/T系统性能的仿真预测模型,与基于... 为准确预测太阳能光伏光热(Solar Photovoltaic/Thermal,PV/T)系统的热、电性能,文章利用PSO(Particle Swarm Optimization)算法优化了RBF(Radial Basis Function)神经网络,并基于此方法建立了太阳能PV/T系统性能的仿真预测模型,与基于未优化RBF神经网络建立的预测模型进行了对比分析。同时,搭建了太阳能PV/T实验平台,通过云平台采集实验数据用于上述模型。研究结果表明:使用PSO算法优化后的RBF神经网络模型相较于未优化模型预测精度提高了20%,预测稳定性提高了30%,拟合优度R值有所提升。基于PSO-RBF神经网络建立的预测模型可精确预测太阳能PV/T系统的热、电性能。 展开更多
关键词 PV/T RBF神经网络 pso算法 模拟预测
下载PDF
基于PSO优化小波神经网络的无人机动力系统故障诊断模型 被引量:2
3
作者 沈延安 杨克泉 陈强 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第4期168-175,共8页
针对传统小波神经网络对无人机动力系统的故障信号降噪和识别能力差以及网络收敛速度慢、训练精度不高的问题,构建了基于改进粒子群算法(PSO)优化小波神经网络的无人机动力系统故障诊断模型。该模型运用软、硬阈值函数组合改进的新阈值... 针对传统小波神经网络对无人机动力系统的故障信号降噪和识别能力差以及网络收敛速度慢、训练精度不高的问题,构建了基于改进粒子群算法(PSO)优化小波神经网络的无人机动力系统故障诊断模型。该模型运用软、硬阈值函数组合改进的新阈值函数和改进PSO优化小波神经网络的方式,克服重构信号不连续或严重失真的问题,优化了小波神经网络初始权值和阈值,使模型能够实现快速、准确分析和识别故障类型,具有较好的故障预测和诊断能力。本文中通过对比不同阈值函数的降噪能力和PSO、GA、ACO对小波神经网络的改进效果,比较BP神经网络、传统小波神经网络、PSO优化小波神经网络的故障诊断预测效果,验证了本文中构建的PSO优化小波神经网络故障诊断模型远优于其他对比模型,具有故障识别和降噪能力强、收敛速度快、训练精度高的优点,在无人机动力系统的故障诊断领域,具有较好的可行性和有效性。 展开更多
关键词 无人机 动力系统 pso 小波神经网络 故障诊断
下载PDF
基于PSO-BP神经网络的新能源汽车销量预测模型
4
作者 王训洪 郝同铮 马聪 《科学技术与工程》 北大核心 2024年第31期13467-13474,共8页
为有效避免新能源汽车销量产销不平衡问题,通过粒子群优化算法(particle swarm optimization,PSO)优化反向传播(back propagation,BP)网络的参数迭代过程,弥补优化原本BP神经网络易陷入局部最优和收敛速度较慢的缺陷,构建了基于PSO-BP... 为有效避免新能源汽车销量产销不平衡问题,通过粒子群优化算法(particle swarm optimization,PSO)优化反向传播(back propagation,BP)网络的参数迭代过程,弥补优化原本BP神经网络易陷入局部最优和收敛速度较慢的缺陷,构建了基于PSO-BP神经网络的新能源汽车销量预测模型,以比亚迪为例进行指数平滑法预测、BP和PSO-BP神经网络预测。结果表明BP神经网络模型相比于指数平滑模型在均方误差(mean square error,MSE)、平均绝对值误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)指标上预测性能优势显著,经过粒子群算法优化后的BP神经网络模型的MSE下降近7×10^(7),MAE下降3346,MAPE下降1.71%。可见基于PSO-BP神经网络的新能源汽车销量预测模型优于指数平滑模型和BP神经网络模型,粒子群优化的BP神经网络能够使模型跳出局部最优,加快收敛速度,预测结果的误差率更低,精度更高,且对企业的计划和生产具有指导作用。 展开更多
关键词 新能源汽车 pso算法 pso-BP神经网络 销量预测模型
下载PDF
基于FRBPSO-RBF神经网络的污水BOD5软测量方法 被引量:1
5
作者 班慧琳 李中志 +1 位作者 李斌勇 王远 《成都信息工程大学学报》 2024年第4期416-421,共6页
污水处理过程中污水BOD5难以实时准确测量,故软测量方法逐渐被用于污水BOD5的预测,其中RBF神经网络软测量方法应用广泛,但存在训练过程易陷入局部极值等问题。为提高RBF神经网络的预测精度,提出了基于适应度排名的粒子群算法(fitness ra... 污水处理过程中污水BOD5难以实时准确测量,故软测量方法逐渐被用于污水BOD5的预测,其中RBF神经网络软测量方法应用广泛,但存在训练过程易陷入局部极值等问题。为提高RBF神经网络的预测精度,提出了基于适应度排名的粒子群算法(fitness ranking based particle swarm optimization,FRBPSO),根据适应度排名与迭代次数确定惯性权重的大小,并根据粒子个体历史最优值的排名与迭代次数确定自我学习因子与社会学习因子的大小,并将FRBPSO算法引入RBF神经网络的参数训练中。基于13个基准测试函数与其他3个粒子群优化算法对比,实验结果显示FRBPSO算法的寻优能力相对较强。再将基于FRBPSO算法的RBF神经网络用于构建污水BOD5软测量模型,仿真结果表明,在测试数据中,FRBPSO-RBF软测量模型的平均绝对误差比PSO-RBF软测量模型、DAIW-RBF软测量模型、SCVPSO-RBF软测量模型分别降低了0.7178、0.2402、0.5851,平均绝对百分比误差分别降低了0.47%、0.15%、0.33%,均方根误差分别降低了0.0034、0.0015、0.0039。与其他3个基于PSO算法的BOD5软测量模型相比,FRBPSO-RBF模型具有较高的BOD5预测精度。 展开更多
关键词 RBF神经网络 pso算法 软测量模型 BOD5软测量 污水水质预测
下载PDF
基于动力学模型优化PSO-RBF神经网络的水下机械臂控制
6
作者 田金鑫 原忠虎 吴宝举 《工业控制计算机》 2024年第10期56-58,61,共4页
随着我国海洋资源开发与利用的增加,对海洋资源开发能力的要求也日益提高。然而,我国在海洋探测方面的研究仍处于起步阶段,面临着复杂的海洋环境和海洋主权保护的挑战。研究聚焦于智能化水下机器人-机械臂系统UVMS的研究。基于Lagrange... 随着我国海洋资源开发与利用的增加,对海洋资源开发能力的要求也日益提高。然而,我国在海洋探测方面的研究仍处于起步阶段,面临着复杂的海洋环境和海洋主权保护的挑战。研究聚焦于智能化水下机器人-机械臂系统UVMS的研究。基于Lagrange法和Morison方程,精确建立了六自由度水下机械臂的动力学模型。为了提高系统的稳定性和轨迹跟踪的准确性,采用了适应值优化的PSO粒子群算法结合RBF神经网络,并将其应用于水下机械臂的动力学模型中。仿真实验结果表明,改进的PSO-RBF神经网络自适应滑模控制算法较传统PID及RBF神经网络算法提前约0.3 s和0.1 s确定控制参数,提前达到稳定状态。 展开更多
关键词 UVMS RBF神经网络 动力学建模 pso粒子群算法 水下机械臂 滑模控制
下载PDF
基于改进PSO-BP神经网络的网络控制系统时延预测
7
作者 魏天旭 赵燕成 +1 位作者 赵景波 胡阵 《陕西科技大学学报》 北大核心 2024年第3期158-165,173,共9页
针对网络控制系统存在的随机时延问题,本文基于BP神经网络(Back Propagation Neural Network, BPNN)建模方法,在PSO(Particle Swarm Optimization)算法的基础上引入遗传算法中交叉和变异的思想,同时对惯性权重和学习因子采用线性递减和... 针对网络控制系统存在的随机时延问题,本文基于BP神经网络(Back Propagation Neural Network, BPNN)建模方法,在PSO(Particle Swarm Optimization)算法的基础上引入遗传算法中交叉和变异的思想,同时对惯性权重和学习因子采用线性递减和异步时变的改进策略,提出了一种性能更优的改进PSO算法,并用该算法优化BP神经网络,构建了一种改进PSO-BP神经网络的时延预测模型;然后运用MATLAB TrueTime2.0工具箱搭建仿真平台,结合获取到的历史时延采样数据对改进PSO-BP时延预测模型和PSO-BP、BP模型进行性能对比测试.实验表明本文所提出模型的预测精度更高,误差更小,能较好的解决网络控制系统的随机时延预测问题. 展开更多
关键词 网络控制系统 pso算法 BP神经网络 网络诱导时延 时延预测
下载PDF
基于PSO-BP神经网络的Savonius型叶轮阵列消波性能优化
8
作者 盛勇 宋瑞银 +3 位作者 杨状状 刘博宇 吴瑞明 任聪杰 《船舶工程》 CSCD 北大核心 2024年第5期160-168,共9页
为了提高Savonius型(S型)叶轮的消波性能,提出一种S型叶轮阵列装置。通过试验记录不同的叶轮间距和叶轮相对入水深度等5个参数下波浪经过叶轮阵列后的透射系数K_(t),建立基于粒子群优化(PSO)算法和反向传播(BP)神经网络的S型叶轮阵列消... 为了提高Savonius型(S型)叶轮的消波性能,提出一种S型叶轮阵列装置。通过试验记录不同的叶轮间距和叶轮相对入水深度等5个参数下波浪经过叶轮阵列后的透射系数K_(t),建立基于粒子群优化(PSO)算法和反向传播(BP)神经网络的S型叶轮阵列消波性能预测模型。将采用该模型与采用BP网络模型和GA-BP网络模型得到的平均绝对误差、均方根误差和决定系数R^(2)指标进行对比,结果表明,采用PSO-BP神经网络模型优化能得到误差更小、更精准的预测结果。当相邻叶轮间距分别为0.62 m和0.41 m、各叶轮入水深度分别为0.15 m、0.18 m和0.19 m时,S型叶轮阵列具有相对最佳的消波性能。 展开更多
关键词 Savonius型叶轮 消波性能 粒子群优化(pso)算法 反向传播(BP)神经网络
下载PDF
基于PSO-BP神经网络的经济型二手车估价分析
9
作者 蔡云 张又水 +2 位作者 吴澳琪 陈森 赵蕾 《内燃机与配件》 2024年第1期109-112,共4页
针对BP神经网络预测二手车价格时易陷入局部极小值以及价格影响因素间存在一定相关性的问题,本文提出了一种基于主成分分析(PCA)和粒子群算法(PSO)优化BP神经网络的价格评估模型。本文将PCA降维后的10个主成分作为影响二手车价格的评估... 针对BP神经网络预测二手车价格时易陷入局部极小值以及价格影响因素间存在一定相关性的问题,本文提出了一种基于主成分分析(PCA)和粒子群算法(PSO)优化BP神经网络的价格评估模型。本文将PCA降维后的10个主成分作为影响二手车价格的评估参数。基于BP神经网络建立经济型二手车价格评估模型,并使用粒子群算法优化网络的权值和阈值,进一步提高网络的预测精度。该模型一定程度上克服了BP神经网络的不足,为二手车价格评估提供了参考。 展开更多
关键词 经济型二手车 估价模型 BP神经网络 主成分分析(PCA) 粒子群算法(pso)
下载PDF
基于PSO粒子群优化BP神经网络的深基坑变形与支撑轴力预测
10
作者 陈峰军 许杰 +2 位作者 沈雯 周泉吉 朱文杰 《新材料·新装饰》 2024年第21期115-118,共4页
深基坑工程监测与预测是确保建筑工程安全与可靠度的关键。文章引入PSO粒子群及动态拓扑网络进行优化,实现了BP神经网络隐含层参数的精准分析,提高了全面预测能力。文章基于PSO粒子群优化BP神经网络模型,对不同施工阶段深基坑变形与支... 深基坑工程监测与预测是确保建筑工程安全与可靠度的关键。文章引入PSO粒子群及动态拓扑网络进行优化,实现了BP神经网络隐含层参数的精准分析,提高了全面预测能力。文章基于PSO粒子群优化BP神经网络模型,对不同施工阶段深基坑变形与支撑轴力演变过程进行预测评估。结果表明,基于PSO粒子群优化BP神经网络模型的变形和轴力预测结果与实测数据吻合较好,且其准确率相较传统BP神经网络模型显著提高。文章研究成果对于提升深基坑工程预测精度具有实用价值,可为施工过程风险预警和安全管理提供科学参考。 展开更多
关键词 pso粒子群 BP神经网络 深基坑监测
下载PDF
基于改进PSO-BP神经网络的挖掘机液压系统故障诊断
11
作者 郭京峰 《现代制造技术与装备》 2024年第11期37-39,共3页
由于现行方法在挖掘机液压系统故障诊断中存在一定不足,无法达到预期效果,提出基于改进粒子群优化算法(ParticleSwarmOptimization,PSO)-反向传播(BackPropagation,BP)神经网络的挖掘机液压系统故障诊断方法。采用无线传感器采集液压系... 由于现行方法在挖掘机液压系统故障诊断中存在一定不足,无法达到预期效果,提出基于改进粒子群优化算法(ParticleSwarmOptimization,PSO)-反向传播(BackPropagation,BP)神经网络的挖掘机液压系统故障诊断方法。采用无线传感器采集液压系统数据,对采集的数据进行预处理,利用PSO对BP神经网络进行迭代训练、优化网络参数,利用改进BP神经网络挖掘液压系统数据,识别诊断系统故障。实验结果表明,所提方法的平均绝对误差百分比不超过1%,漏诊比例也不超过1%,能够实现对挖掘机液压系统故障的精准诊断。 展开更多
关键词 改进粒子群优化算法(pso) 反向传播(BP)神经网络 挖掘机 液压系统 故障诊断
下载PDF
基于PSO-BP神经网络与PSO-SVM的抗乳腺癌药物性质预测 被引量:10
12
作者 许美贤 郑琰 +1 位作者 李炎举 吴伟豪 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第1期51-65,共15页
通过实验筛选研发新药的过程非常缓慢且需耗费大量的人力物力,而利用计算机辅助预测药物的分子性质可极大地节省药物研发时间和成本.因此,为了能够使抗乳腺癌候选药物对抑制ERα具有良好的生物活性和ADMET性质,针对收集到的1 974种化合... 通过实验筛选研发新药的过程非常缓慢且需耗费大量的人力物力,而利用计算机辅助预测药物的分子性质可极大地节省药物研发时间和成本.因此,为了能够使抗乳腺癌候选药物对抑制ERα具有良好的生物活性和ADMET性质,针对收集到的1 974种化合物,首先利用随机森林分类器筛选出前20个对生物活性最具显著影响的分子描述符,并以此和pIC50值作为特征数据建立QSAR模型.其次,基于PSO优化BP神经网络对50个新化合物的生物活性值进行预测,模型拟合度为0.833 7,根均方误差为0.731 5,比优化前的BP神经网络预测值更贴合实际.随后为提高药物研发的成功率,依据已有的ADMET性质数据利用PSO优化SVM构建ADMET分类预测模型,算法交叉验证CV准确率达到94.076 7%,5个指标模型的预测准确率均在79%以上.结果表明,所建立的模型比基准模型的预测性能更好,采用的预测策略是有效的,可为抗乳腺癌药物的研发提供借鉴. 展开更多
关键词 抗乳腺癌药物 生物活性 ADMET性质 粒子群优化算法 BP神经网络 支持向量机
下载PDF
基于PSO-BP神经网络的车牌号码识别技术 被引量:27
13
作者 吴志攀 赵跃龙 +1 位作者 罗中良 杜华英 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期46-52,共7页
针对传统BP神经网络在车牌识别的应用领域中,存在经常性陷入局部最优,而导致识别效果不理想事实。提出一种基于PSO-BP神经网络的车牌号码识别技术方法,该方法首先构建一个8-25-1的BP神经网络,再通过提取车牌的8像素比特征值作为BP神经... 针对传统BP神经网络在车牌识别的应用领域中,存在经常性陷入局部最优,而导致识别效果不理想事实。提出一种基于PSO-BP神经网络的车牌号码识别技术方法,该方法首先构建一个8-25-1的BP神经网络,再通过提取车牌的8像素比特征值作为BP神经网络的输入向量,然后采用粒子群算法(PSO)对该BP神经网络的权值和阈值进行优化,使其适应值达到最小。通过300副不同光照环境和污损的车牌识别仿真实验,验证了所提出的算法相对于传统的模板匹配算法和BP算法,具有输出误差小、全局收敛速度快和识别率高的特征,具有一定的应用价值。 展开更多
关键词 BP神经网络 粒子群算法(pso) pso—BP神经网络 车牌识别
下载PDF
基于PSO-BP神经网络的城轨列车转向架轮对轴箱故障预测 被引量:21
14
作者 尹怀仙 王凯 +3 位作者 张铁柱 华青松 秦勇 郭建媛 《复杂系统与复杂性科学》 EI CSCD 北大核心 2015年第4期97-103,共7页
为更好地预测城轨列车故障率,提出基于粒子群算法优化的BP神经网络(PSO-BP)的故障率预测模型,对城轨列车转向架轮对轴箱进行故障率预测。采用Matlab中的Newff函数,运用误差反向传播神经网络(BP)和粒子群算法优化的BP神经网络(PSO-BP)分... 为更好地预测城轨列车故障率,提出基于粒子群算法优化的BP神经网络(PSO-BP)的故障率预测模型,对城轨列车转向架轮对轴箱进行故障率预测。采用Matlab中的Newff函数,运用误差反向传播神经网络(BP)和粒子群算法优化的BP神经网络(PSO-BP)分别对城轨列车故障率预测、建模和仿真。结果表明PSO改进的BP神经网络故障率预测模型的效果明显优于传统BP神经网络预测模型。 展开更多
关键词 城轨列车 轮对轴箱 故障率预测 BP神经网络 pso
下载PDF
基于PSO改进的BP神经网络数据手套手势识别 被引量:22
15
作者 李东洁 李君祥 +1 位作者 张越 曾禛 《电机与控制学报》 EI CSCD 北大核心 2014年第8期87-93,共7页
针对5DT数据手套手势识别这一问题,提出BP神经网络和PSO算法相结合的识别方法。首先利用特征提取和归一化方法建立通用手势模板,并基于此模板采用BP神经网络进行训练学习,同时通过PSO算法修正BP神经网络的权值和阈值,将训练完毕的神经... 针对5DT数据手套手势识别这一问题,提出BP神经网络和PSO算法相结合的识别方法。首先利用特征提取和归一化方法建立通用手势模板,并基于此模板采用BP神经网络进行训练学习,同时通过PSO算法修正BP神经网络的权值和阈值,将训练完毕的神经网络用于实际操作过程中的手势识别。该方法既保留了BP算法结构简单、易于实现的优点,同时避免了不同操作者复杂的标定过程。仿真和实验结果表明,所提出的控制方法有效的缩短了学习时间,并且提高了识别过程的实时性和精确性。 展开更多
关键词 手势识别 BP神经网络 pso算法 数据手套 机器人
下载PDF
BP神经网络和SVM在矿山环境评价中的应用分析 被引量:37
16
作者 李东 周可法 +3 位作者 孙卫东 王金林 于浩 刘慧 《干旱区地理》 CSCD 北大核心 2015年第1期128-134,共7页
矿山环境的影响因素多样,定量评价过程易受人为因素干预。BP神经网络与SVM算法能够自动模拟各因子间的非线性关系。首次将其引入到矿山环境评价中,选取160个单元作为训练样本,以自然地理、基础地质、开发占地及地质环境等4个大类的14个... 矿山环境的影响因素多样,定量评价过程易受人为因素干预。BP神经网络与SVM算法能够自动模拟各因子间的非线性关系。首次将其引入到矿山环境评价中,选取160个单元作为训练样本,以自然地理、基础地质、开发占地及地质环境等4个大类的14个变量指标为输入向量,以单元评价得分为输出向量,分别建立BP神经网络与SVM矿山环境评价模型。结果表明:两种模型均能满足矿山环境评价的精度要求;SVM模型收敛速度较BP神经网络快,MSE小于BP神经网络,更适合矿山环境评价工作;将定量模型应用于研究区,评价得分划分为4个级别,与定性评价结果一致,为矿山环境评价工作提供了新思路。 展开更多
关键词 矿山环境评价 BP神经网络 支持向量机(svm) GIS
下载PDF
基于改进PSO算法的过热汽温神经网络预测控制 被引量:17
17
作者 肖本贤 王晓伟 +1 位作者 朱志国 刘一福 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第3期569-573,共5页
将改进粒子群优化算法(MPSO)融合到神经网络预测控制中,提出了基于MPSO-RBF混合优化策略的模型预测器,以及基于MPSO算法的非线性优化控制器.针对过热汽温的控制。构造了基于神经网络预测控制的串级控制系统,并就该系统在实现时所涉及到... 将改进粒子群优化算法(MPSO)融合到神经网络预测控制中,提出了基于MPSO-RBF混合优化策略的模型预测器,以及基于MPSO算法的非线性优化控制器.针对过热汽温的控制。构造了基于神经网络预测控制的串级控制系统,并就该系统在实现时所涉及到的预测模型、滚动优化算法、反馈校正、仿真参数设置问题等进行了分析,给出了MPSO算法的粒子编码、操作设计和混合优化算法步骤.对某超临界600 MW直流锅炉高温过热器的过热汽温控制,进行了仿真试验,结果表明该方法具有良好的性能指标和应用前景. 展开更多
关键词 改进pso算法 RBF神经网络 优化策略 神经网络预测控制 过热汽温
下载PDF
基于PSO算法的BP神经网络对水体叶绿素a的预测 被引量:16
18
作者 虞英杰 蒋卫刚 徐明芳 《环境科学研究》 EI CAS CSCD 北大核心 2011年第5期526-532,共7页
BP神经网络(Back Propagation Network)在水体富营养化评价及预测中已广泛应用,但传统BP算法的收敛速度慢并易陷入局部最优.提出了一种基于微粒群(PSO)算法的BP神经网络模型,利用PSO对神经网络的权值进行修正,优化神经网络结构及算法全... BP神经网络(Back Propagation Network)在水体富营养化评价及预测中已广泛应用,但传统BP算法的收敛速度慢并易陷入局部最优.提出了一种基于微粒群(PSO)算法的BP神经网络模型,利用PSO对神经网络的权值进行修正,优化神经网络结构及算法全局收敛性.选择最能代表明湖水质状况的5号采样点作为研究对象,把2009年4月—2010年3月的月样本插值为周样本,对明湖ρ(Chla)的短期变化趋势进行了预测,并用6号采样点数据来验证网络的泛化能力.比较分析基于PSO算法的新模型与传统BP算法模型的预测精度表明,新模型有效克服了传统算法的缺点,提高了网络的预测能力和学习能力. 展开更多
关键词 BP神经网络 pso算法 预测 叶绿素A
下载PDF
IPSO-BP神经网络在渭河天水段水质评价中的应用 被引量:18
19
作者 王彤彤 张剑 +3 位作者 涂川 赵文芳 陈明明 赵成章 《环境科学与技术》 CAS CSCD 北大核心 2013年第8期175-181,共7页
水质评价是进行水环境容量计算和实施水污染控制规划的重要基础,能为改善河流水资源污染程度,保护河流水资源提供方向性、原则性的方案和依据。文章通过改进的PSO算法优化BP神经网络的权值和阈值,获得最优权值和阈值后建立IPSO-BP神经... 水质评价是进行水环境容量计算和实施水污染控制规划的重要基础,能为改善河流水资源污染程度,保护河流水资源提供方向性、原则性的方案和依据。文章通过改进的PSO算法优化BP神经网络的权值和阈值,获得最优权值和阈值后建立IPSO-BP神经网络水质评价模型,针对关中-天水经济区中天水段地表水质,利用2003-2009年渭河天水段4个控制断面的监测数据,选取BOD5、DO、氨氮、总磷、高锰酸盐指数5个指标进行综合评价,并分析了污染现状及时空变化规律。结果表明,改进的PSO-BP神经网络泛化能力强,评价更客观;7年间水质有一定程度的改善,但总体变化不大,水质类别主要为Ⅱ类和Ⅲ类,其中北道桥断面污染最为严重。研究旨在有效控制渭河流域天水段污染,为渭河水资源的保护提供科学依据。 展开更多
关键词 改进的pso算法 BP神经网络 水质评价 渭河天水段
下载PDF
基于改进型PSO的模糊神经网络PM_(2.5)浓度预测 被引量:21
20
作者 马天成 刘大铭 +1 位作者 李雪洁 孙川川 《计算机工程与设计》 CSCD 北大核心 2014年第9期3258-3262,共5页
为科学合理地预测大气污染物PM2.5颗粒物浓度变化规律,分析PM2.5颗粒物浓度变化历史数据,综合判断外部条件(温度、风速、天气状况)和内部条件(其它污染物的浓度)对PM2.5颗粒物浓度变化的影响。采用一种改进型PSO优化的模糊神经网络,将... 为科学合理地预测大气污染物PM2.5颗粒物浓度变化规律,分析PM2.5颗粒物浓度变化历史数据,综合判断外部条件(温度、风速、天气状况)和内部条件(其它污染物的浓度)对PM2.5颗粒物浓度变化的影响。采用一种改进型PSO优化的模糊神经网络,将粒子群算法与模糊神经网络进行融合,发挥PSO算法全局寻优的特点,预测PM2.5颗粒物浓度的变化规律。对某市2013年PM2.5颗粒物浓度进行预测和验证,验证结果表明,该算法具备良好的预测精度。 展开更多
关键词 PM2.5浓度预测 改进型pso算法 模糊理论 神经网络 模型参数
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部