期刊文献+
共找到58,200篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进NSGA-Ⅱ算法的梯级水库多目标优化调度 被引量:2
1
作者 黄显峰 王宁 +2 位作者 刘志佳 方国华 钱骏 《水利水电科技进展》 CSCD 北大核心 2024年第4期51-58,共8页
针对在时间步长较小、计算时段数目较多时,传统智能优化算法在求解梯级水库联合优化调度问题上效率低甚至无可行解的问题,提出了一种改进NSGA-Ⅱ算法。该算法基于NSGA-Ⅱ算法框架,引入参考目标值、潜力目标值、偏移度以及变异引导算子... 针对在时间步长较小、计算时段数目较多时,传统智能优化算法在求解梯级水库联合优化调度问题上效率低甚至无可行解的问题,提出了一种改进NSGA-Ⅱ算法。该算法基于NSGA-Ⅱ算法框架,引入参考目标值、潜力目标值、偏移度以及变异引导算子来优化种群进化过程,强化迭代中的种群质量,使获得的解集更加接近真实的Pareto前沿。福建省金溪流域梯级水库多目标优化调度实例验证结果表明,改进NSGA-Ⅱ算法相对其他算法运算效率更高,优化结果更好,具有较好的实用性。 展开更多
关键词 梯级水库 优化调度 多目标优化 改进NSGA-Ⅱ算法
下载PDF
改进群体智能算法的无线传感器网络覆盖优化 被引量:4
2
作者 贾润亮 张海玉 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期155-166,共12页
为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimizat... 为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimization and Harris Hawk Optimization Algorithm,ICHHO).该算法首先对黑猩猩优化算法(Chimpanzee Optimization Algorithm,ChOA)进行改进,使用Levy Flight来改善其探索阶段,然后设计一个更新的公式来计算猎物逃逸能量,作为开发和探索之间的选择因素.传感器节点随机部署后,将ICHHO在传感器节点上执行,按照改进策略更新个体位置信息,计算相应的适应程度,找到最优传感器位置,并根据传感器概率模型确定网络最优覆盖率.仿真结果验证了ICHHO对于解决WSN覆盖问题的适用性,与其他优化算法的对比结果显示,ICHHO在提高覆盖率方面优于其他算法. 展开更多
关键词 无线传感器网络 黑猩猩优化 哈里斯鹰优化 覆盖率 群体智能算法
下载PDF
基于混合遗传算法的多无人机巡逻路径优化 被引量:1
3
作者 李国军 郑滋椀 +2 位作者 范英盛 卢甜甜 徐志江 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第1期21-28,共8页
假设无人机巡逻的起、终点均为派出所,提出了一种融合传统遗传算法和爬山算法的警用无人机巡逻路径优化模型——混合遗传算法。按照轮盘赌法则,进行种群个体的选择,以增大优秀种群个体被选中的概率,达到较好的优化效果。同时定义了与路... 假设无人机巡逻的起、终点均为派出所,提出了一种融合传统遗传算法和爬山算法的警用无人机巡逻路径优化模型——混合遗传算法。按照轮盘赌法则,进行种群个体的选择,以增大优秀种群个体被选中的概率,达到较好的优化效果。同时定义了与路径优化相适应的基因交叉和变异规则。仿真结果表明,提出的混合遗传算法在寻优效果上明显优于传统遗传算法。 展开更多
关键词 遗传算法 爬山算法 巡逻 路径优化
下载PDF
基于改进实数编码遗传算法的神经网络超参数优化 被引量:2
4
作者 佘维 李阳 +2 位作者 钟李红 孔德锋 田钊 《计算机应用》 CSCD 北大核心 2024年第3期671-676,共6页
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使... 针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。 展开更多
关键词 实数编码 遗传算法 超参数优化 进化神经网络 机器学习
下载PDF
智能算法的亚群优化策略综述 被引量:1
5
作者 杜晓昕 周薇 +4 位作者 王浩 郝田茹 王振飞 金梅 张剑飞 《计算机应用》 CSCD 北大核心 2024年第3期819-830,共12页
群智能算法的优化是提升群智能算法性能的一个主要途径,随着群智能算法越来越广泛地运用到各类模型优化、生产调度、路径规划等问题中,对智能算法性能的要求也越来越高。亚群策略作为一种优化群智能算法的重要手段,能够灵活地平衡算法... 群智能算法的优化是提升群智能算法性能的一个主要途径,随着群智能算法越来越广泛地运用到各类模型优化、生产调度、路径规划等问题中,对智能算法性能的要求也越来越高。亚群策略作为一种优化群智能算法的重要手段,能够灵活地平衡算法的全局勘探能力和局部开发能力,已经成为群智能算法的研究热点之一。为了促进亚群优化策略的发展和应用,对动态亚群策略、基于主从范式的亚群策略和基于网络结构的亚群策略进行了详细调查,阐述了各类亚群策略的结构特点、改进方式和应用场景。最后,总结了亚群策略目前存在的问题以及未来的研究趋势和发展方向。 展开更多
关键词 粒子群优化算法 群智能算法 动态亚群策略 主从范式 网络结构
下载PDF
一种求解高维优化问题的改进灰狼算法 被引量:1
6
作者 李煜 林笑笑 刘景森 《系统工程学报》 CSCD 北大核心 2024年第2期200-216,共17页
为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶... 为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶段增加反向学习,增强种群多样性.根据算法各个阶段不同特征引入衰减因子,平衡全局和局部勘探能力.选取8个高维函数和23个不同特征的优化函数对算法性能进行测试,进一步使用收敛性分析,寻优成功率,CPU时间,Wilcoxon秩和检验来评估改进算法,实验结果表明,ORGWO算法在求解高维问题上具有较好的精度,鲁棒性和更快的收敛速度. 展开更多
关键词 灰狼优化算法 反向学习 衰减因子 高维优化问题
下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
7
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值聚类 鹈鹕优化算法 点云简化 信息熵
下载PDF
基于SA-PSO算法优化CNN的电能质量扰动分类模型 被引量:2
8
作者 肖白 李道明 +2 位作者 穆钢 高文瑞 董光德 《电力自动化设备》 EI CSCD 北大核心 2024年第5期185-190,共6页
针对传统电能质量扰动分类模型中扰动特征复杂、识别步骤繁琐的问题,提出了一种通过模拟退火(SA)算法与粒子群优化(PSO)算法相结合来优化卷积神经网络(CNN)的电能质量扰动分类模型。将CNN卷积层中的二维卷积核替换成一维卷积核;采用SA... 针对传统电能质量扰动分类模型中扰动特征复杂、识别步骤繁琐的问题,提出了一种通过模拟退火(SA)算法与粒子群优化(PSO)算法相结合来优化卷积神经网络(CNN)的电能质量扰动分类模型。将CNN卷积层中的二维卷积核替换成一维卷积核;采用SA算法对PSO算法进行改进,规避PSO算法陷入局部最优的困境;采用改进后的PSO算法对CNN进行参数寻优;利用优化CNN提取和筛选合适的特征,根据这些特征利用分类器得到最终分类结果。通过算例分析得出,使用基于SA-PSO算法优化的CNN的电能质量扰动分类模型能精确地识别出电能质量扰动信号。 展开更多
关键词 电能质量 扰动分类 卷积神经网络 粒子群优化算法 模拟退火算法 特征提取
下载PDF
基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别 被引量:2
9
作者 刘帼巾 刘达明 +3 位作者 缪建华 杨雨泽 王乐康 刘琦 《电工技术学报》 EI CSCD 北大核心 2024年第4期1221-1233,共13页
自动转换开关(ATSE)是保证系统连续供电的设备,对其进行健康监测和故障诊断对系统的稳定运行具有重要意义。为了实现对ATSE的非侵入式故障识别,该文提出一种基于电流信号变分模态分解(VMD)的特征提取和改进灰狼算法(IGWO)优化深度置信网... 自动转换开关(ATSE)是保证系统连续供电的设备,对其进行健康监测和故障诊断对系统的稳定运行具有重要意义。为了实现对ATSE的非侵入式故障识别,该文提出一种基于电流信号变分模态分解(VMD)的特征提取和改进灰狼算法(IGWO)优化深度置信网络(DBN)相结合的故障诊断方法。该方法首先利用样本熵确定VMD分解次数并对故障电流进行分解;其次对分解后得到的本征模态函数进行小波包能量的提取,并利用IGWO对DBN网络结构参数进行优化;最后通过DBN将电流能量特征与ATSE的故障类型建立起映射关系从而完成最终的故障识别。所提IGWO采用了分段调节与非线性递减的衰减因子相结合的策略,以平衡算法全局搜索和局部搜索能力;并采用莱维飞行更新探狼的移动位置,来避免算法陷入早熟收敛。实验结果表明,该算法不仅能显著提高前期对参数寻优的训练速度,后续泛化实验的故障分类准确率也有98.78%的良好表现。 展开更多
关键词 优化灰狼算法 深度置信网络 自动转换开关 故障识别
下载PDF
基于麻雀搜索算法的微电网分层优化调度 被引量:1
10
作者 吴成明 邢博洋 李世春 《南方电网技术》 CSCD 北大核心 2024年第2期115-123,共9页
为综合考虑微电网供给侧和需求侧的利益,建立了微电网分层优化模型;上层以净负荷成本和用电满意度为目标优化负荷曲线,下层以运行成本和环境成本为目标优化各单元出力,并选择麻雀搜索算法(SSA)求解这类复杂优化问题。针对SSA易陷入局部... 为综合考虑微电网供给侧和需求侧的利益,建立了微电网分层优化模型;上层以净负荷成本和用电满意度为目标优化负荷曲线,下层以运行成本和环境成本为目标优化各单元出力,并选择麻雀搜索算法(SSA)求解这类复杂优化问题。针对SSA易陷入局部最优的问题,提出一种改进麻雀搜索算法(ISSA),改进了发现者搜索方式,引入了变异、贪婪策略;并且加入非支配排序和轮盘赌法将ISSA改进为多目标算法。算例结果表明可转移负荷占比为10%时能够协调微电网供需两侧的利益;对比ISSA与SSA、粒子群算法(PSO)、鸡群算法(CSO)和灰狼算法(GWO)的迭代结果,证明ISSA具有良好的寻优效果和稳定性。 展开更多
关键词 微电网 需求响应 分层优化 麻雀搜索算法(SSA)
下载PDF
改进流向算法的无线传感器网络覆盖优化 被引量:1
11
作者 陈伟 杨盘隆 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第2期241-247,共7页
针对标准流向算法易陷入局部最优和收敛精度低等问题,提出一种融合莱维(Levy)飞行和入侵杂草策略的改进流向算法.首先,该算法在选择水流流向时引入Levy飞行机制,使水流沿最优水流位置方向做Levy飞行运动,避免陷入局部最优;其次,利用入... 针对标准流向算法易陷入局部最优和收敛精度低等问题,提出一种融合莱维(Levy)飞行和入侵杂草策略的改进流向算法.首先,该算法在选择水流流向时引入Levy飞行机制,使水流沿最优水流位置方向做Levy飞行运动,避免陷入局部最优;其次,利用入侵杂草策略,对每一代水流进行繁殖、空间扩散和竞争操作,增加水流的多样性,扩大搜索范围,提高全局寻优能力.最后,将改进流向算法应用于无线传感器网络覆盖优化中,并与标准流向算法及其他改进算法进行实验对比.仿真结果表明,相比标准流向算法及其他改进算法,所提改进流向算法的覆盖性能有大幅提升,覆盖率可达98.52%,可实现更均匀的节点分布和更低的部署成本. 展开更多
关键词 人工智能 无线传感器网络 流向算法 莱维飞行 入侵杂草算法 节点分布 覆盖优化
下载PDF
基于遗传算法的风电齿轮传动系统参数优化设计 被引量:2
12
作者 王保民 闫瑞翔 +2 位作者 房文博 赵瑞平 刘洪芹 《兰州理工大学学报》 CAS 北大核心 2024年第2期31-35,共5页
齿轮箱是风力发电系统的重要部件,其体积大、重量高等问题制约了风电清洁能源的发展.以1.5 WM风力发电机组为研究对象,建立齿轮传动系统轻量化数学模型,并采用遗传算法进行优化求解.结果表明,采用遗传算法是可行的,优化后齿轮传动系统... 齿轮箱是风力发电系统的重要部件,其体积大、重量高等问题制约了风电清洁能源的发展.以1.5 WM风力发电机组为研究对象,建立齿轮传动系统轻量化数学模型,并采用遗传算法进行优化求解.结果表明,采用遗传算法是可行的,优化后齿轮传动系统体积减少了4.59%,这将进一步减小齿轮传动系统箱体体积和总质量.通过计算行星轮系的传动效率,验证了优化结果的可行性,该研究将为风电齿轮传动系统轻量化设计提供新方法. 展开更多
关键词 风电齿轮箱 优化设计 传动系统 遗传算法 传动效率
下载PDF
基于集合经验模态分解和多目标遗传算法的火-多储系统调频功率双层优化 被引量:4
13
作者 李翠萍 司文博 +2 位作者 李军徽 严干贵 贾晨 《电工技术学报》 EI CSCD 北大核心 2024年第7期2017-2032,共16页
针对分布于区域电网不同网络节点的多座储能电站参与电网调频功率调度问题,该文提出一种基于集合经验模态分解(EEMD)和多目标遗传算法(MOGA)的火-多储系统调频功率双层优化策略。该策略包含火-储调频功率优化层和多储能电站调频功率优化... 针对分布于区域电网不同网络节点的多座储能电站参与电网调频功率调度问题,该文提出一种基于集合经验模态分解(EEMD)和多目标遗传算法(MOGA)的火-多储系统调频功率双层优化策略。该策略包含火-储调频功率优化层和多储能电站调频功率优化层:上层计及火-储调配资源各自优势及剩余调频能力,构建火-储调频功率优化分配模型,完成火-储调频功率的分配;下层引入关于调频成本和荷电状态(SOC)的自适应权重系数,以调频成本最低和SOC均衡为优化目标,完成调频功率在多储能电站之间的分配。仿真结果表明,所提策略可以提升区域电网调频效果并降低调频成本,均衡控制多个储能电站的调频成本和SOC,可以防止经济性较好的储能电站长期处于SOC越限边缘状态,提升储能电站参与调频的积极性和可持续性。 展开更多
关键词 多火电储能系统 二次调频 双层优化控制 多目标遗传算法(MOGA) 自适 应权重系数
下载PDF
基于蜣螂算法优化的投影寻踪生态环境评价方法构建 被引量:1
14
作者 刘英 范雅慧 +8 位作者 衡文静 许萍萍 岳辉 毕银丽 牛鸿波 田少国 祖鹏举 曹满红 董起广 《煤炭学报》 EI CAS CSCD 北大核心 2024年第6期2799-2810,共12页
矿山开采会破坏和占用大量土地资源,对生态环境造成持久的负面影响,因此评价矿区生态环境质量变化迫在眉睫。为了准确监测矿区生态环境质量,以陕煤集团张家峁矿区2000—2023年24期逐年的Landsat影像为基础数据,通过计算绿度(Normalized ... 矿山开采会破坏和占用大量土地资源,对生态环境造成持久的负面影响,因此评价矿区生态环境质量变化迫在眉睫。为了准确监测矿区生态环境质量,以陕煤集团张家峁矿区2000—2023年24期逐年的Landsat影像为基础数据,通过计算绿度(Normalized Difference Vegetation Index,NDVI)、湿度(Humidity Index,WET)、热度(Land Surface Temperature,LST)、干度(Normalized Differential Build-up and bare Soil Index,NDBSI)4项生态指标,并采用基于果蝇优化算法的投影寻踪(Fruit Fly Optimization Algorithm-Projection Pursuit Clustering,FOA–PPC)、基于粒子群优化算法的投影寻踪(Particle Swarm Optimization-Projection Pursuit Clustering,PSO–PPC)、基于灰狼优化算法的投影寻踪(Grey Wolf Optimizer-Projection Pursuit Clustering,GWO–PPC)和基于蜣螂优化算法的投影寻踪(Dung Beetle Optimizer-Projection Pursuit Clustering,DBO–PPC)4种群智能优化算法构建矿区生态环境质量评价方法,并利用平均相关度进行精度验证。结果表明:①DBO–PPC模型的平均相关度和类内聚集度均高于PSO–PPC模型、FOA–PPC模型和GWO–PPC模型,且与EI指数更接近,表明DBO–PPC能更好的评估研究区生态环境;②基于DBO–PPC模型的张家峁矿区2000—2023年生态环境质量均值为0.4,生态环境质量以差和较差等级为主,面积占比约55.94%,空间上呈西部差东部好,常家沟水库的生态环境在研究期内表现为优等级,矿区东北部和中部区域的生态环境较好,植被覆盖较多;③矿区发生沉陷面积占比为81.28%,沉陷最大值达−0.15 m;采区发生沉陷现象面积占比明显高于矿区,占采区面积的89.56%,生态环境质量以−0.0004的速率下降,表明采矿活动使得研究区的地表发生了沉陷,进而影响到生态环境。综上所述DBO–PPC模型在监测评价矿区生态环境质量方面具有较强的合理性,从而为矿区生态环境可持续发展提供技术手段。 展开更多
关键词 群智能优化算法 投影寻踪 DBO–PPC 生态环境评价
下载PDF
改进多目标蜂群算法优化洗出运动及仿真实验 被引量:1
15
作者 王辉 彭乐 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期436-448,共13页
针对经典洗出算法参数选择不当导致信号缺失,引起失真,影响洗出效果等问题,提出一种改进的多目标人工蜂群算法,利用该算法对经典洗出算法中的滤波器参数进行优化来改善洗出算法的洗出效果。针对传统蜂群算法初始化和局部优化中存在的问... 针对经典洗出算法参数选择不当导致信号缺失,引起失真,影响洗出效果等问题,提出一种改进的多目标人工蜂群算法,利用该算法对经典洗出算法中的滤波器参数进行优化来改善洗出算法的洗出效果。针对传统蜂群算法初始化和局部优化中存在的问题,引入Circle映射和Pareto局部优化算法;建立人体感知误差模型、加速度差值模型、位移模型,将模型函数作为目标函数,用改进后的多目标人工蜂群算法对经典洗出算法进行参数优化;建立仿真模型对优化后的洗出算法进行仿真验证,应用飞行模拟器运动实验平台进行实验验证。结果表明:经优化后的洗出算法,洗出逼真度得到有效提升,降低了误差峰值,改善了相位延迟,节省了运动空间。 展开更多
关键词 多目标优化 人工蜂群算法 洗出算法 参数优化 动感逼真度
下载PDF
基于多特征提取与灰狼算法优化SVM的车内异响识别方法 被引量:1
16
作者 王若平 陈严 +2 位作者 王东 梁博洋 曾发林 《计算机应用与软件》 北大核心 2024年第3期41-48,共8页
传统的异响识别方法对测试设备要求较高且易受实验员经验差异影响。针对这种情况,提出一种基于多特征提取与灰狼算法优化支持向量机(Support Vector Machine,SVM)的车内异响识别方法。该方法以采集实验获得的6种车内常见异响作为研究对... 传统的异响识别方法对测试设备要求较高且易受实验员经验差异影响。针对这种情况,提出一种基于多特征提取与灰狼算法优化支持向量机(Support Vector Machine,SVM)的车内异响识别方法。该方法以采集实验获得的6种车内常见异响作为研究对象,提取短时能量、小波变换优化的梅尔频率倒谱系数(DWT-MFCC)及其一阶差分组成混合特征参数,将灰狼优化算法应用于SVM的参数寻优中,建立异响识别模型并进行识别分类,同时探究选用不同维度的特征或不同算法对识别效果的影响。结果表明,所提取的25维混合特征能有效传达异响信息,该方法在收敛速度与识别准确率方面优势明显,能更好地实现车内异响的识别。 展开更多
关键词 车内异响识别 短时能量 DWT-MFCC 灰狼优化算法 支持向量机
下载PDF
引入相量算子和流向算子的天鹰优化算法 被引量:1
17
作者 周玉 裴泽宣 +1 位作者 王培崇 陈博 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第2期304-316,共13页
针对天鹰优化算法搜索效率不足,容易陷入局部最优的缺点,提出多策略改进天鹰优化算法(MIAO).引入广义正态分布优化算法(GNDO),将该算法得出的结果与天鹰优化算法第1阶段得出的结果进行比较,筛选出这2种优化算法下的最优值.该操作扩大了... 针对天鹰优化算法搜索效率不足,容易陷入局部最优的缺点,提出多策略改进天鹰优化算法(MIAO).引入广义正态分布优化算法(GNDO),将该算法得出的结果与天鹰优化算法第1阶段得出的结果进行比较,筛选出这2种优化算法下的最优值.该操作扩大了搜索空间,提高了解的质量.引入相量算子,将第2阶段变为自适应的非参数优化,提高算法的高维优化能力.针对天鹰优化算法在迭代后期存在种群多样性降低、局部开发能力不足的问题,在天鹰算法的第3阶段引入流向算子,使信息可以在每个个体间相互传递,提高种群信息的利用率,增强天鹰优化算法的开发性能.通过对16个测试函数寻优对比分析以及Wilcoxon秩和检验可知,MIAO的寻优能力和收敛速度都有较大的提升.为了验证MIAO算法的实用性和可行性,采用所提算法求解减速器设计问题,通过实际工程优化问题的实验对比分析可知,MIAO算法在处理现实优化问题上具有一定的优越性. 展开更多
关键词 天鹰优化算法 广义正态分布优化算法 相量算子 流向算子 测试函数 Wilcoxon秩和检验
下载PDF
基于RTCP控制算法的叶片加工六轴砂带磨床优化设计 被引量:1
18
作者 冯华勇 杨林建 袁秀坤 《工具技术》 北大核心 2024年第1期101-105,共5页
基于叶片型面磨削工艺参数及工艺过程确定机床各坐标轴运动性能和磨削接触压力,进行叶片加工砂带磨床优化设计和频率分析。采用RTCP算法和传动链独立的算法结构模式,建立转轴数学模型、工件传动链算法库以及刀具传动链算法库。对设计的... 基于叶片型面磨削工艺参数及工艺过程确定机床各坐标轴运动性能和磨削接触压力,进行叶片加工砂带磨床优化设计和频率分析。采用RTCP算法和传动链独立的算法结构模式,建立转轴数学模型、工件传动链算法库以及刀具传动链算法库。对设计的机床伺服速度进行测试,优化机床结构薄弱环节,满足叶片型面及全特征型面磨削要求。通过有限元分析研究X,Y,Z轴的变形量,计算六轴砂带磨床1阶~6阶的固有振动频率,并进行分析和优化,提高了叶片磨削的轮廓精度,加工经济效益显著。 展开更多
关键词 RTCP控制算法 叶片加工 砂带磨床 优化设计
下载PDF
基于遗传算法的磨削力模型系数优化及验证 被引量:1
19
作者 王栋 张志鹏 +3 位作者 赵睿 张君宇 乔瑞勇 孙少铮 《郑州大学学报(工学版)》 北大核心 2024年第1期21-28,共8页
在磨削力模型求解问题中,目前大多使用分段计算法或列方程组直接计算各个待求系数,不仅计算量大且其精度也无法保证。另外,传统的回归模型容易陷入局部最优,难以描述非线性关系。为此,将遗传算法引入到非线性优化函数参数优化中,基于外... 在磨削力模型求解问题中,目前大多使用分段计算法或列方程组直接计算各个待求系数,不仅计算量大且其精度也无法保证。另外,传统的回归模型容易陷入局部最优,难以描述非线性关系。为此,将遗传算法引入到非线性优化函数参数优化中,基于外圆横向磨削力模型、平面磨削力模型、外圆纵向磨削力模型等现有的模型数据,开展磨削力理论模型的系数优化方法研究。相关性分析结果表明:通过计算得到的3种模型磨削力的预测精度提高了14.69%~42.54%,且3种模型所预测的法向磨削力的平均误差分别为5.9%、9.13%、3.23%,切向力平均误差分别为6.78%、8.36%、3.69%。经对比知,优化后的模型拟合度较好,模型预测精度显著提高。遗传算法优化后的非线性优化函数GA-LSQ算法更适合磨削力模型的求解,可对磨削力的预测及实际加工生产中的参数优化提供参考。 展开更多
关键词 磨削力模型 外圆磨削 平面磨削 经验公式 模型系数优化 模型预测 遗传算法 非线性优化函数
下载PDF
基于近端策略优化算法的燃料电池混合动力系统综合价值损耗最小能量管理方法 被引量:1
20
作者 李奇 刘鑫 +4 位作者 孟翔 谭逸 杨明泽 张世聪 陈维荣 《中国电机工程学报》 EI CSCD 北大核心 2024年第12期4788-4798,I0015,共12页
为了降低市域动车组燃料电池混合动力系统运行燃料经济成本,提升燃料电池耐久性,该文提出一种基于近端策略优化算法的能量管理方法。该方法将混合动力系统能量管理问题建模为马尔可夫决策过程,以综合考虑燃料经济性和燃料电池耐久性的... 为了降低市域动车组燃料电池混合动力系统运行燃料经济成本,提升燃料电池耐久性,该文提出一种基于近端策略优化算法的能量管理方法。该方法将混合动力系统能量管理问题建模为马尔可夫决策过程,以综合考虑燃料经济性和燃料电池耐久性的综合价值损耗最小为优化目标设置奖励函数,采用一种收敛速度较快的深度强化学习算法—近端策略优化算法求解,实现负载功率在燃料电池和锂电池间的合理有效分配,最后,采用市域动车组实际运行工况进行实验验证。实验结果表明,在训练工况下,所提方法相较基于等效氢耗最小能量管理方法和基于Q-learning能量管理方法,综合价值损耗分别降低19.71%和5.87%;在未知工况下,综合价值损耗分别降低18.05%和13.52%。结果表明,所提方法能够有效降低综合价值损耗,并具有较好的工况适应性。 展开更多
关键词 燃料电池混合动力系统 深度强化学习 综合价值损耗 近端策略优化算法 能量管理
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部