期刊文献+
共找到2,262篇文章
< 1 2 114 >
每页显示 20 50 100
LociScan,a tool for screening genetic marker combinations for plant variety discrimination
1
作者 Yang Yang Hongli Tian +5 位作者 Hongmei Yi Zi Shi Lu Wang Yaming Fan Fengge Wang Jiuran Zhao 《The Crop Journal》 SCIE CSCD 2024年第2期583-593,共11页
To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening m... To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed. 展开更多
关键词 Plant variety discrimination Genetic marker combination Variety discrimination power Genetic algorithm
下载PDF
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China
2
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
下载PDF
Correcting the systematic error of the density functional theory calculation:the alternate combination approach of genetic algorithm and neural network 被引量:1
3
作者 王婷婷 李文龙 +1 位作者 陈章辉 缪灵 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期437-444,共8页
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a bl... The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the ACANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here. 展开更多
关键词 density functional theory neural network genetic algorithm alternate combination
下载PDF
Global Optimization for Combination Test Suite by Cluster Searching Algorithm
4
作者 Hao Chen Xiaoying Pan Jiaze Sun 《自动化学报》 EI CSCD 北大核心 2017年第9期1625-1635,共11页
下载PDF
Comprehensive evaluation of the transformer oil-paper insulation state based on RF-combination weighting and an improved TOPSIS method 被引量:7
5
作者 Fugen Song Shichao Tong 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期654-665,共12页
The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighti... The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighting and an improved technique for order of preference by similarity to ideal solution(TOPSIS)method to perform an objective and scientific evaluation of the transformer oil-paper insulation state.Firstly,multiple aging features are extracted from the recovery voltage polarization spectrum and the extended Debye equivalent circuit owing to the limitations of using a single feature for evaluation.A standard evaluation index system is then established by using the collected time-domain dielectric spectrum data.Secondly,this study implements the per-unit value concept to integrate the dimension of the index matrix and calculates the objective weight by using the random forest algorithm.Furthermore,it combines the weighting model to overcome the drawbacks of the single weighting method by using the indicators and considering the subjective experience of experts and the random forest algorithm.Lastly,the enhanced TOPSIS approach is used to determine the insulation quality of an oil-paper transformer.A verification example demonstrates that the evaluation model developed in this study can efficiently and accurately diagnose the insulation status of transformers.Essentially,this study presents a novel approach for the assessment of transformer oil-paper insulation. 展开更多
关键词 combined weight method Random forest algorithm Insulation aging assessment Oil-paper insulation Time-domain eigenvalue
下载PDF
Task scheduling for multi-electro-magnetic detection satellite with a combined algorithm 被引量:1
6
作者 Jianghan Zhu Lining Zhang +1 位作者 Dishan Qiu Haoping Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期88-98,共11页
Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer pr... Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer programming with constraint programming is presented. This algorithm is deployed in this problem through two steps. The first step is to decompose the original problem into master and sub-problem using the logic-based Benders decomposition; then a circus combines master and sub-problem solving process together, and the connection between them is general Benders cut. This hybrid algorithm is tested by a set of derived experiments. The result is compared with corresponding outcomes generated by the strength Pareto evolutionary algorithm and the pure constraint programming solver GECODE, which is an open source software. These tests and comparisons yield promising effect. 展开更多
关键词 task scheduling combined algorithm logic-based Benders decomposition combinatorial optimization constraint programming (CP).
下载PDF
Solution of Combined Heat and Power Economic Dispatch Problem Using Direct Optimization Algorithm 被引量:1
7
作者 Dedacus N. Ohaegbuchi Olaniyi S. Maliki +1 位作者 Chinedu P. A. Okwaraoka Hillary Erondu Okwudiri 《Energy and Power Engineering》 CAS 2022年第12期737-746,共10页
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr... This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided. 展开更多
关键词 Economic Dispatch Lagrange Multiplier algorithm combined Heat and Power Constraints and Objective Functions Optimal Dispatch
下载PDF
Recognition of vertical vowel graphemes of Korean characters based on combination of vowel graphemes
8
作者 崔荣一 洪炳熔 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第3期302-306,共5页
Korean characters consist of 2 dimensional distributed consonantal and vowel graphemes. The purpose of reducing the 2 dimensional characteristics of Korean characters to linear arrangements at early stage of character... Korean characters consist of 2 dimensional distributed consonantal and vowel graphemes. The purpose of reducing the 2 dimensional characteristics of Korean characters to linear arrangements at early stage of character recognition is to decrease the complexity of following recognition task. By defining the identification codes for the vowel graphemes of Korean characters, the rules for combination of vowel graphemes are established, and a recognition algorithm based on the rules for combination of vowel graphemes, is therefore proposed for vertical vowel graphemes. The algorithm has been proved feasilbe through demonstrating simulations. 展开更多
关键词 KOREAN character RECOGNITION identification codes of VOWEL graphemes combination rules of vowelgraphemes RECOGNITION algorithm for VERTICAL VOWEL graphemes
下载PDF
Fast combination of scheduling chains under resource and time constraints
9
作者 WANG Ji-min PAN Xue-zeng +1 位作者 WANG Jie-bing SUN Kang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第1期119-126,共8页
Scheduling chain combination is the core of chain-based scheduling algorithms, the speed of which determines the overall performance of corresponding scheduling algorithm. However, backtracking is used in general comb... Scheduling chain combination is the core of chain-based scheduling algorithms, the speed of which determines the overall performance of corresponding scheduling algorithm. However, backtracking is used in general combination algorithms to traverse the whole search space which may introduce redundant operations, so performance of the combination algorithm is generally poor. A fast scheduling chain combination algorithm which avoids redundant operations by skipping “incompatible” steps of scheduling chains and using a stack to remember the scheduling state is presented in this paper to overcome the problem. Experimental results showed that it can improve the performance of scheduling algorithms by up to 15 times. By further omitting unnecessary operations, a fast algorithm of minimum combination length prediction is developed, which can improve the speed by up to 10 times. 展开更多
关键词 Fast combination algorithm Chain-based scheduling algorithm High-level synthesis (HLS) Minimum length prediction
下载PDF
Optimal Scheduling Method of Cogeneration System with Heat Storage Device Based on Memetic Algorithm 被引量:1
10
作者 Haibo Li YibaoWang +2 位作者 Xinfu Pang Wei Liu Xu Zhang 《Energy Engineering》 EI 2023年第2期317-343,共27页
Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To imp... Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution. 展开更多
关键词 combined heat and power generation heat storage device memetic algorithm simulated annealing wind abandonment
下载PDF
A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm
11
作者 吕干云 程浩忠 翟海保 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期649-653,共5页
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances... A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above. 展开更多
关键词 PQ disturbances identification combining neural network LS weighted fusion algorithm improved PLL system
下载PDF
In silico method for studying property combination of traditional Chinese herbs
12
作者 Yanan Hu Fang Dong +1 位作者 Yun Wang Yanjiang Qiao 《Journal of Traditional Chinese Medical Sciences》 2016年第1期37-40,共4页
Objective:This paper discusses the composition of prescription qualitative,quantitative design principles and methods based on herbal property combination,describing the method application in new prescription design.M... Objective:This paper discusses the composition of prescription qualitative,quantitative design principles and methods based on herbal property combination,describing the method application in new prescription design.Method:Qualitative property-combination pattern(PP)calculation was based on bipartite graphing and performing a greedy algorithm which was designed to optimize obtaining a new herbal prescription.Quantitative PP calculation was based on the qualitative computation.To calculate the Euclidean distance for the PP of the new prescription,an optimized algorithm for solving the unknown minimum Euclidean distance was used with,the new weighted proportions.Finally,non-linear optimization software was used to find the minimum Euclidean distance.Results:Using the PP of classic prescription Large Yin-Nourishing Pill,applying quantitative PP calculation a new prescription was created.Mathematical algorithms based on property combinations of traditional Chinese herbs can be applied to identify compatibility and synergies of herbs within prescriptions,especially classic formulas.Conclusion:In silico methods can then be used to create new prescriptions or modify existing ones depending on need.This type of automated approach may increase efficiency in designing new drugs based on Chinese herbs. 展开更多
关键词 Traditional Chinese medicine Herbal property combination Prescription compatibility Bipartite graph Greedy algorithm
下载PDF
顾及特征离散程度的SEaTH特征优化选择方法 被引量:1
13
作者 瞿伟 王宇豪 +2 位作者 王乐 李久元 李达 《测绘学报》 EI CSCD 北大核心 2024年第1期20-35,共16页
特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无... 特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无法有效确定出分类顺序,提出了一种改进的SEaTH算法(optimized SEaTH,OPSEaTH)。OPSEaTH算法首先在J-M距离基础上构建了一类特征评价指标(E值),有效解决了特征值的离散度问题;然后,基于E值构建出特征组合评价指标(C_(e)值),可有效评估得到每种地物的最佳特征组合并自动确定出地物的分类顺序;最后基于eCognition等分类器可完成对地物对象的最终有效分类。利用高分二号遥感影像数据对本文方法进行了测试,并将结果分别与SEaTH算法、DPC、OIF和最近邻分类器的分类结果进行了对比,结果表明:OPSEaTH算法不仅能有效降低特征维数、优化特征空间,还能够对分类顺序进行自动化合理确定,总体精度和Kappa系数及其他精度指标,均显著优于基于SEaTH算法的特征选择结果。本文方法无论从特征降维效果、分类结果精度还是计算效率方面均优于DPC、OIF和最近邻分类器结果。OPSEaTH是一种更优的特征选择方法。 展开更多
关键词 SEaTH算法 特征选择 离散系数 特征组合 分类顺序 改进SEaTH算法
下载PDF
钻孔瞬变电磁法扫描探测RCQPSO-LMO组合算法2.5D反演 被引量:3
14
作者 程久龙 焦俊俊 +1 位作者 陈志 董毅 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第2期781-792,共12页
利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描... 利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描探测2.5D反演的数据解译方法,首先针对随机性反演算法时效性低,易陷入局部最优解,而确定性反演算法依赖初始模型的问题,提出了组合策略的量子粒子群优化算法用来随机搜索最优初始模型.在此基础上,利用Levenberg-Marquarat方法求解Occam反演的目标函数,形成了RCQPSO-LMO组合算法进行2.5D反演,通过对比组合算法和单一算法,验证了组合算法具有更精确的反演结果.其次结合屏蔽条件下扫描探测,对比分析了有无屏蔽的2.5D反演结果,通过设定屏蔽系数对非探测方向信号进行部分压制,可以较好地解决钻孔径向扫描探测中对非探测方向信号部分屏蔽下的反演及成像.最后建立三组理论模型进行组合算法2.5D反演,结果表明:组合算法反演结果与理论模型的一致性较好,对低阻异常体的反演精度较高,验证了组合算法对钻孔孔壁外围低阻异常体具有较高的反演精度和分辨能力. 展开更多
关键词 钻孔瞬变电磁法 扫描探测 量子粒子群优化算法 组合算法 2.5D反演
下载PDF
煤矿井下掘进机器人路径规划方法研究 被引量:1
15
作者 张旭辉 郑西利 +4 位作者 杨文娟 李语阳 麻兵 董征 陈鑫 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第4期152-163,共12页
针对煤矿非全断面巷道条件下掘进机器人移机难度大、效率低下等问题,分析了煤矿井下非结构化环境特征及掘进机器人运动特性,提出了基于深度强化学习的掘进机器人机身路径规划方法。利用深度相机将巷道环境实时重建,在虚拟环境中建立掘... 针对煤矿非全断面巷道条件下掘进机器人移机难度大、效率低下等问题,分析了煤矿井下非结构化环境特征及掘进机器人运动特性,提出了基于深度强化学习的掘进机器人机身路径规划方法。利用深度相机将巷道环境实时重建,在虚拟环境中建立掘进机器人与巷道环境的碰撞检测模型,并使用层次包围盒法进行虚拟环境碰撞检测,形成巷道边界受限下的避障策略。考虑到掘进机器人形体大小且路径规划过程目标单一,在传统SAC算法的基础上引入后见经验回放技术,提出HER-SAC算法,该算法通过环境初始目标得到的轨迹扩展目标子集,以增加训练样本、提高训练速度。在此基础上,基于奖惩机制建立智能体,根据掘进机器人运动特性定义其状态空间与动作空间,在同一场景下分别使用3种算法对智能体进行训练,综合平均奖励值、最高奖励值、达到最高奖励值的步数以及鲁棒性4项性能指标进行对比分析。为进一步验证所提方法的可靠性,采用虚实结合的方式,通过调整目标位置设置2种实验场景进行掘进机器人的路径规划,并将传统SAC算法和HER-SAC算法的路径结果进行对比。结果表明:相较于PPO算法和SAC算法,HER-SAC算法收敛速度更快、综合性能达到最优;在2种实验场景下,HER-SAC算法相比传统SAC算法规划出的路径更加平滑、路径长度更短、路径终点与目标位置的误差在3.53 cm以内,能够有效地完成移机路径规划任务。该方法为煤矿掘进机器人的自主移机控制奠定了理论基础,为煤矿掘进设备自动化提供了新方法。 展开更多
关键词 掘进机器人 路径规划 深度强化学习 智能体 虚实结合 改进SAC算法 煤矿
下载PDF
角钢塔螺栓的紧固控制技术 被引量:1
16
作者 王向周 陈旸 +1 位作者 赵国强 韩谦 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第4期395-402,共8页
针对角钢塔螺栓紧固作业需求,研究了一种轻量化、扭矩可准确控制的电动扳手.为了解决轻量化问题,提出了一种自抗扰控制器与滑模观测器融合算法,实现了无扭矩传感器的电动扳手扭矩参数估计与控制.首先,将自抗扰控制器引进扭矩环、速度环... 针对角钢塔螺栓紧固作业需求,研究了一种轻量化、扭矩可准确控制的电动扳手.为了解决轻量化问题,提出了一种自抗扰控制器与滑模观测器融合算法,实现了无扭矩传感器的电动扳手扭矩参数估计与控制.首先,将自抗扰控制器引进扭矩环、速度环,在对其总扰动量进行估计的同时得到角加速度的估计值,然后将该角加速度值作为二阶滑模观测器的输入进行紧固扭矩值的估计,解决了二阶滑模观测器中变量的导数值难以获得的问题.仿真和实验结果表明,与传统PID控制器、滑模控制器相比,所提方法可实现扭矩的准确估计,具有扭矩调节时间短,超调小的特点. 展开更多
关键词 电动扳手 螺栓紧固 自抗扰控制 扭矩控制 自抗扰与滑模观测器融合算法
下载PDF
基于贪心组合优化的分布极端不平衡分类算法
17
作者 陈兴国 许静 +1 位作者 李扬 罗玉盘 《小型微型计算机系统》 CSCD 北大核心 2024年第10期2411-2419,共9页
现有针对不平衡数据分类的研究主要从重采样、特征、代价和算法等4个角度展开,方法多样,但针对极端不平衡的数据分布仍缺乏有效算法.本文的目标是通过结合各种算法的特性获取一个最优性能的组合算法.本文假设算法间的组合满足次模函数性... 现有针对不平衡数据分类的研究主要从重采样、特征、代价和算法等4个角度展开,方法多样,但针对极端不平衡的数据分布仍缺乏有效算法.本文的目标是通过结合各种算法的特性获取一个最优性能的组合算法.本文假设算法间的组合满足次模函数性质,并采用贪心的组合优化方法.具体而言,选择深度森林算法为基础,依次组合最优重采样方法、以异常检测思想的特征提取方法对数据进行的特征处理方法或基于贝叶斯优化的最优代价敏感矩阵方法.在3种组合算法中选择分类性能最优的算法组合,再次组合其余角度的方法,判断分类性能是否再次提升.实验选择两组极端不平衡数据——真实饮用水数据和UCI数据库中的page-blocks数据进行验证.结果表明,基于贪心优化对算法间进行组合,在3轮迭代后得到的算法组合,较单一算法其分类性能能有进一步的提升. 展开更多
关键词 次模函数 贪心优化 数据分布极端不平衡 深度森林 组合算法
下载PDF
基于改进金豺算法的短期负荷预测 被引量:2
18
作者 谢国民 王润良 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期65-74,共10页
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用... 针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。 展开更多
关键词 变分模态分解 改进金豺算法 双向长短期记忆 组合模型 短期负荷预测
下载PDF
基于改进INFO-Bi-LSTM模型的SO_(2)排放质量浓度预测 被引量:1
19
作者 王琦 柴宇唤 +2 位作者 王鹏程 刘百川 刘祥 《动力工程学报》 CAS CSCD 北大核心 2024年第4期641-649,共9页
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN... 针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。 展开更多
关键词 炉内外联合脱硫 烟气SO_(2)质量浓度 INFO算法 Bi-LSTM神经网络 Circle混沌映射 自适应t分布
下载PDF
复合联运物流运输网络建模与路径优化
20
作者 张楠 魏波 陈聪 《科技和产业》 2024年第5期102-110,共9页
在全球经济一体化背景下,物流行业成为不可或缺的经济支柱之一,在经济中的作用不断显现,复合联运逐渐成为物流行业的重要运输方式。以空铁海复合联运作为研究对象,构建不同的搜索空间,确定边界条件并分析货运影响参数,包括时间、成本、... 在全球经济一体化背景下,物流行业成为不可或缺的经济支柱之一,在经济中的作用不断显现,复合联运逐渐成为物流行业的重要运输方式。以空铁海复合联运作为研究对象,构建不同的搜索空间,确定边界条件并分析货运影响参数,包括时间、成本、距离。以遗传算法为原则,求解建立空铁海复合联运模型并进行路径优化。确定3组节点组,每组都包含普通货物、特殊货物、航线拥堵3种情况,分别优化成本、时间、距离,为复合联运业务提供路径选择依据。通过分析,在规定的搜索空间内分别选出了最优时间路线、最优成本路线、最优距离路线。期望可以在物流运输过程中实现降本增效、减少风险、提高行业竞争力的目的。 展开更多
关键词 复合联运 路径优化 搜索空间 遗传算法
下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部