期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PSO-GWO-SVM的周界安防信号识别研究
被引量:
6
1
作者
江虹
王新远
+1 位作者
王奉宇
李进
《激光与红外》
CAS
CSCD
北大核心
2018年第3期396-400,共5页
针对支持向量机(SVM)在大规模入侵信号分类时存在的局限性,提出了一种改进的SVM信号识别方法。该方法首先采用粒子群优化算法(PSO)来生成多样化的初始位置,然后利用灰狼优化算法(GWO)更新离散搜索空间中样本的当前位置,获得最优特征子集...
针对支持向量机(SVM)在大规模入侵信号分类时存在的局限性,提出了一种改进的SVM信号识别方法。该方法首先采用粒子群优化算法(PSO)来生成多样化的初始位置,然后利用灰狼优化算法(GWO)更新离散搜索空间中样本的当前位置,获得最优特征子集;最后基于最优特征子集用SVM对待测样本进行分类识别。实验结果显明,在识别周界入侵信号时,基于PSO-GWO-SVM算法的分类器获得了96.86%的准确率、95.82%的灵敏度(SE)和96.31%的特异性。与传统的信号识别方法相比,具有更优异的识别精度、适应性和时效性。
展开更多
关键词
pso-gwo优化
支持向量机
最优特征子集
入侵信号识别
下载PDF
职称材料
题名
基于PSO-GWO-SVM的周界安防信号识别研究
被引量:
6
1
作者
江虹
王新远
王奉宇
李进
机构
长春工业大学电气与电子工程学院
出处
《激光与红外》
CAS
CSCD
北大核心
2018年第3期396-400,共5页
基金
吉林省科技厅基金项目(No.20150204019SF)资助
文摘
针对支持向量机(SVM)在大规模入侵信号分类时存在的局限性,提出了一种改进的SVM信号识别方法。该方法首先采用粒子群优化算法(PSO)来生成多样化的初始位置,然后利用灰狼优化算法(GWO)更新离散搜索空间中样本的当前位置,获得最优特征子集;最后基于最优特征子集用SVM对待测样本进行分类识别。实验结果显明,在识别周界入侵信号时,基于PSO-GWO-SVM算法的分类器获得了96.86%的准确率、95.82%的灵敏度(SE)和96.31%的特异性。与传统的信号识别方法相比,具有更优异的识别精度、适应性和时效性。
关键词
pso-gwo优化
支持向量机
最优特征子集
入侵信号识别
Keywords
pso-gwo
optimization
support vector machine
optimal feature subset
intrusion signal recognition
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PSO-GWO-SVM的周界安防信号识别研究
江虹
王新远
王奉宇
李进
《激光与红外》
CAS
CSCD
北大核心
2018
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部