Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pep...Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.展开更多
The quality of the low frequency electromagnetic data is affected by the spike and the trend noises.Failure in removal of the spikes and the trends reduces the credibility of data explanation.Based on the analyses of ...The quality of the low frequency electromagnetic data is affected by the spike and the trend noises.Failure in removal of the spikes and the trends reduces the credibility of data explanation.Based on the analyses of the causes and characteristics of these noises,this paper presents the results of a preset statistics stacking method(PSSM)and a piecewise linear fitting method(PLFM)in de-noising the spikes and trends,respectively.The magnitudes of the spikes are either higher or lower than the normal values,which leads to distortion of the useful signal.Comparisons have been performed in removing of the spikes among the average,the statistics and the PSSM methods,and the results indicate that only the PSSM can remove the spikes successfully.On the other hand,the spectrums of the linear and nonlinear trends mainly lie in the low frequency band and can change the calculated resistivity significantly.No influence of the trends is observed when the frequency is higher than a certain threshold value.The PLSM can remove effectively both the linear and nonlinear trends with errors around 1% in the power spectrum.The proposed methods present an effective way for de-noising the spike and the trend noises in the low frequency electromagnetic data,and establish a research basis for de-noising the low frequency noises.展开更多
Digital images are frequently contaminated by impulse noise(IN)during acquisition and transmission.The removal of this noise from images is essential for their further processing.In this paper,a two-staged nonlinear f...Digital images are frequently contaminated by impulse noise(IN)during acquisition and transmission.The removal of this noise from images is essential for their further processing.In this paper,a two-staged nonlinear filtering algorithm is proposed for removing random-valued impulse noise(RVIN)from digital images.Noisy pixels are identified and corrected in two cascaded stages.The statistics of two subsets of nearest neighbors are employed as the criterion for detecting noisy pixels in the first stage,while directional differences are adopted as the detector criterion in the second stage.The respective adaptive median values are taken as the replacement values for noisy pixels in each stage.The performance of the proposed method was compared with that of several existing methods.The experimental results show that the performance of the suggested algorithm is superior to those of the compared methods in terms of noise removal,edge preservation,and processing time.展开更多
Aiming at the existing problems of discrete cosine transform(DCT) de-noising method, we introduce the idea of wavelet neighboring coefficients(WNC) de-noising method, and propose the cosine neighboring coefficients(CN...Aiming at the existing problems of discrete cosine transform(DCT) de-noising method, we introduce the idea of wavelet neighboring coefficients(WNC) de-noising method, and propose the cosine neighboring coefficients(CNC) de-noising method. Based on DCT, a novel method for the fault feature extraction of hydraulic pump is analyzed. The vibration signal of pump is de-noised with CNC de-noising method, and the fault feature is extracted by performing Hilbert-Huang transform(HHT) to the output signal. The analysis results of the simulation signal and the actual one demonstrate that the proposed CNC de-noising method and the fault feature extraction method have more superior ability than the traditional ones.展开更多
Measured differential phase shift ΦDP is known to be a noisy unstable polarimetric radar variable, such that the quality of ΦDP data has direct impact on specific differential phase shift KDP estimation, and subsequ...Measured differential phase shift ΦDP is known to be a noisy unstable polarimetric radar variable, such that the quality of ΦDP data has direct impact on specific differential phase shift KDP estimation, and subsequently, the KDP-based rainfall estimation. Over the past decades, many ΦDP de-noising methods have been developed; however, the de-noising effects in these methods and their impact on KDP-based rainfall estimation lack comprehensive comparative analysis. In this study, simulated noisy ΦDP data were generated and de-noised by using several methods such as finite-impulse response(FIR), Kalman, wavelet,traditional mean, and median filters. The biases were compared between KDP from simulated and observedΦDP radial profiles after de-noising by these methods. The results suggest that the complicated FIR, Kalman,and wavelet methods have a better de-noising effect than the traditional methods. After ΦDP was de-noised,the accuracy of the KDP-based rainfall estimation increased significantly based on the analysis of three actual rainfall events. The improvement in estimation was more obvious when KDP was estimated with ΦDP de-noised by Kalman, FIR, and wavelet methods when the average rainfall was heavier than 5 mm h-1.However, the improved estimation was not significant when the precipitation intensity further increased to a rainfall rate beyond 10 mm h-1. The performance of wavelet analysis was found to be the most stable of these filters.展开更多
Under the complex condition of nuclear power plant, all kinds of influence factors may cause distortion of on-line monitoring data. It is essential that on-line monitoring data should be de-noised in order to ensure t...Under the complex condition of nuclear power plant, all kinds of influence factors may cause distortion of on-line monitoring data. It is essential that on-line monitoring data should be de-noised in order to ensure the accuracy of diagnosis. Based on the research of wavelet analysis and threshold de-noising, a new threshold denoising method based on Mallat transform is proposed. This method adopts factor weighing method for threshold quantization. Through the specific case of nuclear power plant, it is verified that the algorithm is of validity and superiority.展开更多
The detection of the low-altitude acoustic target is an important way to compensate for the weakness of radar.Removing the noise mixed in acoustic signal as much as possible to retain the useful information is a chall...The detection of the low-altitude acoustic target is an important way to compensate for the weakness of radar.Removing the noise mixed in acoustic signal as much as possible to retain the useful information is a challenging task.Inspired by the wavelet threshold,the de-noising method for low-altitude battlefield acoustic signal based on threshold empirical mode decomposition(EMD-T)is proposed in this paper.Firstly,the noisy signal is decomposed by empirical mode decomposition(EMD)to get the intrinsic mode functions(IMFs).Then the IMFs,whose actual energy exceeds its estimated energy,are processed by the EMD threshold.Finally,the processed IMFs are summed to reconstruct the de-noised signal.To evaluate the performance of the proposed method,extensive simulations are performed using helicopter sound corrupted with four types of typical low-altitude ambient noise under different signal-to-noise ratio(SNR)input values.The performance is evaluated in terms of SNR,root mean square error(RMSE)and smoothness index(SI).The simulations results reveal that the proposed method de-noising method has the perspective of the highest SNR,smallest RMSE and SI in de-noising low-altitude ambient noise compared to other methods,including the wavelet transform(WT)and conventional EMD.展开更多
Conclusion is that the soft threshold de-noising effect is better than hard threshold de-noising though the signal to noise ratio and Root Mean Square error. After analyzing, de-noising and reconstructing signal throu...Conclusion is that the soft threshold de-noising effect is better than hard threshold de-noising though the signal to noise ratio and Root Mean Square error. After analyzing, de-noising and reconstructing signal through wavelet packet from Matlab software, the average value of peak extracted from signal reconstruction is gotten to provide data for dynamic balance. Making use of the influence coefficient method to adjust drum of CTP dynamic balance, the program of Matlab is used to find phase position and weight of the mass block quickly, which can provide evidence for software for dynamic balance developed.展开更多
文摘Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.
文摘The quality of the low frequency electromagnetic data is affected by the spike and the trend noises.Failure in removal of the spikes and the trends reduces the credibility of data explanation.Based on the analyses of the causes and characteristics of these noises,this paper presents the results of a preset statistics stacking method(PSSM)and a piecewise linear fitting method(PLFM)in de-noising the spikes and trends,respectively.The magnitudes of the spikes are either higher or lower than the normal values,which leads to distortion of the useful signal.Comparisons have been performed in removing of the spikes among the average,the statistics and the PSSM methods,and the results indicate that only the PSSM can remove the spikes successfully.On the other hand,the spectrums of the linear and nonlinear trends mainly lie in the low frequency band and can change the calculated resistivity significantly.No influence of the trends is observed when the frequency is higher than a certain threshold value.The PLSM can remove effectively both the linear and nonlinear trends with errors around 1% in the power spectrum.The proposed methods present an effective way for de-noising the spike and the trend noises in the low frequency electromagnetic data,and establish a research basis for de-noising the low frequency noises.
基金supported by the Opening Project of Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences (No. CAS-KLAOTKF201308)partly by the special funding for Young Researcher of Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences(Y-12)
文摘Digital images are frequently contaminated by impulse noise(IN)during acquisition and transmission.The removal of this noise from images is essential for their further processing.In this paper,a two-staged nonlinear filtering algorithm is proposed for removing random-valued impulse noise(RVIN)from digital images.Noisy pixels are identified and corrected in two cascaded stages.The statistics of two subsets of nearest neighbors are employed as the criterion for detecting noisy pixels in the first stage,while directional differences are adopted as the detector criterion in the second stage.The respective adaptive median values are taken as the replacement values for noisy pixels in each stage.The performance of the proposed method was compared with that of several existing methods.The experimental results show that the performance of the suggested algorithm is superior to those of the compared methods in terms of noise removal,edge preservation,and processing time.
基金the National Natural Science Foundation of China(No.51275524)the General Armaments Department Equipment Support Research Project
文摘Aiming at the existing problems of discrete cosine transform(DCT) de-noising method, we introduce the idea of wavelet neighboring coefficients(WNC) de-noising method, and propose the cosine neighboring coefficients(CNC) de-noising method. Based on DCT, a novel method for the fault feature extraction of hydraulic pump is analyzed. The vibration signal of pump is de-noised with CNC de-noising method, and the fault feature is extracted by performing Hilbert-Huang transform(HHT) to the output signal. The analysis results of the simulation signal and the actual one demonstrate that the proposed CNC de-noising method and the fault feature extraction method have more superior ability than the traditional ones.
基金Supported by the National Natural Science Foundation of China(41375038)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306040 and GYHY201306075)Jiangshu Province Meteorological Administration Beijige Open Research Fund(BJG201201)
文摘Measured differential phase shift ΦDP is known to be a noisy unstable polarimetric radar variable, such that the quality of ΦDP data has direct impact on specific differential phase shift KDP estimation, and subsequently, the KDP-based rainfall estimation. Over the past decades, many ΦDP de-noising methods have been developed; however, the de-noising effects in these methods and their impact on KDP-based rainfall estimation lack comprehensive comparative analysis. In this study, simulated noisy ΦDP data were generated and de-noised by using several methods such as finite-impulse response(FIR), Kalman, wavelet,traditional mean, and median filters. The biases were compared between KDP from simulated and observedΦDP radial profiles after de-noising by these methods. The results suggest that the complicated FIR, Kalman,and wavelet methods have a better de-noising effect than the traditional methods. After ΦDP was de-noised,the accuracy of the KDP-based rainfall estimation increased significantly based on the analysis of three actual rainfall events. The improvement in estimation was more obvious when KDP was estimated with ΦDP de-noised by Kalman, FIR, and wavelet methods when the average rainfall was heavier than 5 mm h-1.However, the improved estimation was not significant when the precipitation intensity further increased to a rainfall rate beyond 10 mm h-1. The performance of wavelet analysis was found to be the most stable of these filters.
文摘Under the complex condition of nuclear power plant, all kinds of influence factors may cause distortion of on-line monitoring data. It is essential that on-line monitoring data should be de-noised in order to ensure the accuracy of diagnosis. Based on the research of wavelet analysis and threshold de-noising, a new threshold denoising method based on Mallat transform is proposed. This method adopts factor weighing method for threshold quantization. Through the specific case of nuclear power plant, it is verified that the algorithm is of validity and superiority.
文摘The detection of the low-altitude acoustic target is an important way to compensate for the weakness of radar.Removing the noise mixed in acoustic signal as much as possible to retain the useful information is a challenging task.Inspired by the wavelet threshold,the de-noising method for low-altitude battlefield acoustic signal based on threshold empirical mode decomposition(EMD-T)is proposed in this paper.Firstly,the noisy signal is decomposed by empirical mode decomposition(EMD)to get the intrinsic mode functions(IMFs).Then the IMFs,whose actual energy exceeds its estimated energy,are processed by the EMD threshold.Finally,the processed IMFs are summed to reconstruct the de-noised signal.To evaluate the performance of the proposed method,extensive simulations are performed using helicopter sound corrupted with four types of typical low-altitude ambient noise under different signal-to-noise ratio(SNR)input values.The performance is evaluated in terms of SNR,root mean square error(RMSE)and smoothness index(SI).The simulations results reveal that the proposed method de-noising method has the perspective of the highest SNR,smallest RMSE and SI in de-noising low-altitude ambient noise compared to other methods,including the wavelet transform(WT)and conventional EMD.
文摘Conclusion is that the soft threshold de-noising effect is better than hard threshold de-noising though the signal to noise ratio and Root Mean Square error. After analyzing, de-noising and reconstructing signal through wavelet packet from Matlab software, the average value of peak extracted from signal reconstruction is gotten to provide data for dynamic balance. Making use of the influence coefficient method to adjust drum of CTP dynamic balance, the program of Matlab is used to find phase position and weight of the mass block quickly, which can provide evidence for software for dynamic balance developed.