期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于LSTM-CNN特征提取和PSO-KNN分类的自动抓梁液压系统故障诊断
1
作者 刘文忠 张世杰 +1 位作者 金兰 王瑞辰 《机床与液压》 北大核心 2024年第18期203-207,共5页
针对自动抓梁液压系统故障诊断正确率低、深层特征提取困难的问题,提出一种基于长短期记忆卷积(LSTM-CNN)特征提取网络和粒子群优化K最近邻(PSO-KNN)结合的自动抓梁液压系统故障诊断模型。以自动抓梁液压系统关键节点压力信息为输入,采... 针对自动抓梁液压系统故障诊断正确率低、深层特征提取困难的问题,提出一种基于长短期记忆卷积(LSTM-CNN)特征提取网络和粒子群优化K最近邻(PSO-KNN)结合的自动抓梁液压系统故障诊断模型。以自动抓梁液压系统关键节点压力信息为输入,采用LSTM提取一维特征与CNN提取的二维特征融合,采用优化后的KNN模型对提取的特征进行故障分类。基于真实数据搭建AMESim自动抓梁模型进行仿真,验证所提方法的有效性与先进性。结果表明:所提模型的诊断正确率达到97.92%,能够有效识别自动抓梁液压系统中的常见故障。 展开更多
关键词 液压自动抓梁 LSTM-CNN pso-knn 故障诊断
下载PDF
基于PSO-kNN算法与多生理参数的压力状态下情绪识别 被引量:2
2
作者 孙洪央 徐祖洋 +3 位作者 王静 雷沛 吴开杰 柴新禹 《中国医疗器械杂志》 CAS 2013年第2期79-83,共5页
压力能诱发兴奋、厌烦、恐惧等多种不同的情绪,不同程度的某种压力能诱发不同程度的情绪。本文通过设计情绪诱发实验,分别诱发出被试平静、兴奋、厌烦、恐惧情绪以及低度、中度、高度三种紧张情绪程度。基于这些情绪状态下被试的心率、... 压力能诱发兴奋、厌烦、恐惧等多种不同的情绪,不同程度的某种压力能诱发不同程度的情绪。本文通过设计情绪诱发实验,分别诱发出被试平静、兴奋、厌烦、恐惧情绪以及低度、中度、高度三种紧张情绪程度。基于这些情绪状态下被试的心率、呼吸率等六种生理信号,去除基线预处理后进行特征提取,结合粒子群优化算法对特征进行选择,采用k近邻算法对压力状态下的不同情绪及紧张情绪程度进行分类。实验结果表明,通过基线去除及粒子群特征选择优化后k近邻分类,与传统k近邻分类相比,具有更好的识别效果。 展开更多
关键词 情感计算 情绪识别 心理压力 PSO KNN
下载PDF
基于PSO-BP的岩性识别方法研究
3
作者 高雅田 杨俊国 《计算机与数字工程》 2024年第4期1119-1124,共6页
近些年来,数据分析、深度学习技术取得了长足的发展,并为社会带来了可观的收益。故利用深度学习手段进行岩性识别也成为了一个研究热点。岩性识别是录井解释的核心业务,准确而有效地预测储层性质对石油勘探工作有着重大意义。为解决传... 近些年来,数据分析、深度学习技术取得了长足的发展,并为社会带来了可观的收益。故利用深度学习手段进行岩性识别也成为了一个研究热点。岩性识别是录井解释的核心业务,准确而有效地预测储层性质对石油勘探工作有着重大意义。为解决传统岩性识别方法成本高、耗时长等缺点。论文利用松辽盆地中若干井的测井数据进行模型研究,提出了一种基于PSO-BP的岩性识别方法。通过对测井源数据进行数据预处理、构建网络识别模型、优化岩性识别模型、评价模型输出结果等步骤,实现基于PSO-BP岩性识别方法。经过反复试验,结果表明采用PSO-BP的岩性识别方法对岩性进行识别的平均准确率可达92.2%,为储层预测工作提供了可靠的支撑。 展开更多
关键词 BP神经网络 粒子群优化算法 岩性识别 数据预处理 KNN 支持向量机
下载PDF
基于PSO-XGB混合优化技术的浅层地下温度预测——以长春市为例
4
作者 于子望 郑天琪 程钰翔 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2023年第6期1907-1916,共10页
准确预测浅层地下温度对于降低投资风险和推动浅层地热能开发利用具有重要意义。本研究基于粒子群优化(PSO)和极限梯度提升(XGB)的混合模型(PSO-XGB),并将其与K近邻(KNN)、支持向量回归(SVR)、随机森林(RF)和极限梯度提升(XGB)等单一模... 准确预测浅层地下温度对于降低投资风险和推动浅层地热能开发利用具有重要意义。本研究基于粒子群优化(PSO)和极限梯度提升(XGB)的混合模型(PSO-XGB),并将其与K近邻(KNN)、支持向量回归(SVR)、随机森林(RF)和极限梯度提升(XGB)等单一模型进行了比较。首先收集了54组钻孔数据,使用克里金插值法对数据集进行扩充,经过相关性分析最终选择经纬度坐标、年平均降雨量、年平均气温和与断裂距离等因素用作预测100 m地下温度的输入特征。然后利用测试集对预测模型进行验证,使用均方根误差(E_(RMS))、平均绝对误差(E_(MA))、决定系数(R^(2))和均方误差(EMS)等指标评估了模型的性能。结果表明,PSO-XGB混合模型在测试集表现最好,ERMS为0.0706,E_(MA)值为0.0549,R^(2)值为0.9620,E_(MS)值为0.0050,在精度和拟合程度上明显高于其他模型,可知PSO-XGB混合模型在预测性能方面优于单一模型。 展开更多
关键词 浅层地温预测 PSO-XGB混合模型 K近邻 支持向量回归 随机森林 极限梯度提升
下载PDF
基于PSO面向K近邻分类的特征权重学习算法 被引量:7
5
作者 任江涛 卓晓岚 +1 位作者 许盛灿 印鉴 《计算机科学》 CSCD 北大核心 2007年第5期187-189,共3页
特征权重学习是基于特征赋权的K近邻算法需要解决的重要问题之一,传统上提出了许多启发式的学习方法。近年来,随着进化计算技术在模式识别及数据挖掘领域的广泛应用,基于进化计算的权重学习和距离学习方法也得到越来越多的重视。本研究... 特征权重学习是基于特征赋权的K近邻算法需要解决的重要问题之一,传统上提出了许多启发式的学习方法。近年来,随着进化计算技术在模式识别及数据挖掘领域的广泛应用,基于进化计算的权重学习和距离学习方法也得到越来越多的重视。本研究针对基于特征赋权的K近邻算法的权重学习问题,提出了一种基于PSO进行权重学习的算法PSOKNN,通过与传统KNN、GAKNN及ReliefKNN的实验比较分析表明,该方法可有效地搜索出合适的特征权重,获得较好的分类精度并淘汰冗余或无关的特征。 展开更多
关键词 特征赋权 K近邻分类 粒子群算法
下载PDF
一种基于PSO同步进行特征选择及参数优化的核K近邻分类算法 被引量:5
6
作者 任江涛 姚树宇 纪庆革 《小型微型计算机系统》 CSCD 北大核心 2007年第8期1461-1464,共4页
特征选择及分类器参数优化是提高分类器性能的两个重要方面,传统上这两个问题是分开解决的.近年来,随着进化优化计算技术在模式识别领域的广泛应用,编码上的灵活性使得特征选择及参数的同步优化成为一种可能和趋势.为了解决此问题,本文... 特征选择及分类器参数优化是提高分类器性能的两个重要方面,传统上这两个问题是分开解决的.近年来,随着进化优化计算技术在模式识别领域的广泛应用,编码上的灵活性使得特征选择及参数的同步优化成为一种可能和趋势.为了解决此问题,本文研究采用二进制PSO算法进行特征选择及核K近邻分类器参数的同步优化.实验表明,该方法可有效地找出合适的特征子集及核函数参数,并取得较好的分类效果. 展开更多
关键词 特征选择 分类器参数 同步优化 粒子群算法 核K近邻算法
下载PDF
简化的粒子群优化快速KNN分类算法 被引量:15
7
作者 李欢 焦建民 《计算机工程与应用》 CSCD 北大核心 2008年第32期57-59,共3页
提出了一种有效的k近邻分类文本分类算法,即SPSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练集中随机搜索,在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,并且去除了粒子群进化过程中粒子速度的... 提出了一种有效的k近邻分类文本分类算法,即SPSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练集中随机搜索,在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,并且去除了粒子群进化过程中粒子速度的影响,从而可以更快速地找到测试样本的k个近邻.通过验证算法的有效性表明,在查找k近邻相同时,SPOSKNN算法的分类精度高于基本KNN算法。 展开更多
关键词 K 近邻分类器 粒子群优化算法 相似度
下载PDF
基于PSO和KNN的网页智能分类算法 被引量:1
8
作者 唐朝霞 《太原师范学院学报(自然科学版)》 2010年第4期55-58,共4页
随着Internet技术的不断发展,Web信息不断的变化和增长.为有效查找用户所需要的信息,需将传统的信息检索向Web信息检索方向发展.如果预先对网页文本进行分类,则面对用户的检索需求就可以在相应的类别中进行查找,这样大大提高了检索的效... 随着Internet技术的不断发展,Web信息不断的变化和增长.为有效查找用户所需要的信息,需将传统的信息检索向Web信息检索方向发展.如果预先对网页文本进行分类,则面对用户的检索需求就可以在相应的类别中进行查找,这样大大提高了检索的效率.文章通过对网页进行预处理,中文分词,特征提取,再使用KNN分类算法对网页进行智能分类,并采用了PSO算法快速寻找K近邻.实验结果表明:该方法不仅减少了网页分类时间,准确率、召回率和F1标准也明显提高,有效地提高了网页智能分类的效率. 展开更多
关键词 中文分词 特征提取 智能分类 KNN分类算法 PSO算法
下载PDF
基于案例库推理法的模拟电路故障诊断技术研究 被引量:3
9
作者 顾凡一 王友仁 +3 位作者 黄三傲 姚睿 张砦 崔江 《计算机测量与控制》 CSCD 2005年第9期921-923,共3页
针对目前模拟电路故障诊断中的技术难点,提出了基于案例库推理法(CBR)的模拟电路故障诊断方法。利用K个最邻近法(K Nearest Neighbors:KNN)来解决模拟电路故障诊断中的案例分类与提取,提出了应用粒子群算法(Particle Swarm Optimization... 针对目前模拟电路故障诊断中的技术难点,提出了基于案例库推理法(CBR)的模拟电路故障诊断方法。利用K个最邻近法(K Nearest Neighbors:KNN)来解决模拟电路故障诊断中的案例分类与提取,提出了应用粒子群算法(Particle Swarm Optimization:PSO)来优化KNN中权值参数的新方法。通过应用实例分析,证明了所提出的新故障诊断方法相比传统的故障诊断方法来说具有简单、聚类性好、诊断精度高的优点。 展开更多
关键词 模拟电路 故障诊断 CBR KNN PSO
下载PDF
PSO-GBDT识别致密砂岩储集层岩性研究——以姬塬油田西部长4+5段为例 被引量:7
10
作者 谷宇峰 张道勇 鲍志东 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2021年第3期624-634,共11页
交会图在致密砂岩储集层应用上难以奏效,其主要原因是多种储集层岩性具有相似测井响应特征而难以在交会图版中被有效分辨。众多机器学习技术可有效分辨属性相似度高的数据,为此识别性能出众的GBDT(gradient boosting decision tree,梯... 交会图在致密砂岩储集层应用上难以奏效,其主要原因是多种储集层岩性具有相似测井响应特征而难以在交会图版中被有效分辨。众多机器学习技术可有效分辨属性相似度高的数据,为此识别性能出众的GBDT(gradient boosting decision tree,梯度提升决策树)常被用来解决致密砂岩储集层岩性识别问题。但GBDT使用较多超参数致训练模型难以最优化,本文选用PSO(particle swarm optimization,粒子群算法)来解决优化问题,进而提出PSO-GBDT模型。本文以姬塬油田西部长4+5段致密砂岩储集层为研究对象,通过设计两个实验来验证提出模型的识别能力。实验结果表明,PSO-GBDT岩性识别准确率分别为(90.37%,88.20%)和(93.48%,90.16%),高于其他验证模型。该模型能有效解决致密砂岩储集层岩性识别问题,在岩性识别研究上具有良好的推广应用前景。 展开更多
关键词 致密砂岩储集层 岩性识别 机器学习 神经网络 GBDT模型 PNN模型 KNN模型 PSO技术
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部