A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi...A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.展开更多
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t...In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.展开更多
[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing durin...[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing during 1951-2010, the Elman artificial neural network model was applied to predict the temperature. [Result] This simulation result suggested that the relative error was small and can have a good simulation to the future temperature changes. [Conclusion] The prediction result can guide agricultural production and further apply to the field of pricing the weather derivative products.展开更多
From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction veh...From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.展开更多
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr...Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.展开更多
This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of s...This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. The Elman recurrent network was applied to non-linear multivariate calibration. In this case, by means of optimization, the wavelet function, decomposition level and number of hidden nodes for WPTERNN method were selected as D4, 5 and 5 respectively. A program PWPTERNN was designed to perform multicomponent kinetic determination. The relative standard error of prediction(RSEP) for all the components with WPTERNN, Elman RNN and PLS were 3.23%, 11.8% and 10.9% respectively. The experimental results show that the method is better than the others.展开更多
Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacoki...Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacokinetics parameters,nonlinear mixed effects model(NONMEM),has the abuses of tedious work and plenty of man-made jamming factors.The Elman feedback neural network was built.The relationships between the patients’plasma concentration of remifentanil and time,patient’age,gender,lean body mass,height,body surface area,sampling time,total dose,and injection rate through network training were obtained to predict the plasma concentration of remifentanil,and after that,it was compared with the results of NONMEM algorithm.In conclusion,the average error of Elman network is 6.34%,while that of NONMEM is 18.99%.The absolute average error of Elman network is 27.07%,while that of NONMEM is 38.09%.The experimental results indicate that Elman neural network could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error.For the characteristics of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetic and pharmacodynamics.展开更多
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ...The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.展开更多
In the present study, ELMAN artificial neural network model was developed to predict the change of NH3-N in aquaculture water. The in- dexes including feed ration, dissolved oxygen in water, water temperature, air tem...In the present study, ELMAN artificial neural network model was developed to predict the change of NH3-N in aquaculture water. The in- dexes including feed ration, dissolved oxygen in water, water temperature, air temperature, water turbidity, rainfall were recorded and chosen as the input variables, while the NHz-N content in the corresponding pond was chosen as output variable. The above data were collected everyday from June to October in 2014 and were used to develop model in this test, and the data collected in November of 2014 were chosen to evaluate the developed model. The results showed that the changing trend of NH3-N in aquaculture water could be simulated well by the model, the predictive absolute error mean was 0.016 mg/L, and Nash-Sutcliffe efficiency coefficient was 0.74. The prediction model based on ELMAN neural network had a strong ability to describe the nonlinear dynamic changes of NH3-N content in aquaculture water, and it showed the good adaptability and accu- racy in practical application.展开更多
The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time de...The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time delay characteristics, presented use feed forward coupling compensation method, to eliminate the coupling effect between temperature and pressure. In this paper, the Elman neural network controller is designed for the first time, and the simulation results show that the response time of Elman neural network controller is shorter, the system is more stable and the overshoot is small.展开更多
This paper introduces a kind of diagnosis principle and learning algorithm of steam turbine fault diagnosis which based on Elman neural network. Comparing the results of the Elman neural network and the traditional BP...This paper introduces a kind of diagnosis principle and learning algorithm of steam turbine fault diagnosis which based on Elman neural network. Comparing the results of the Elman neural network and the traditional BP neural network diagnosis, the results shows that Elman neural network is an effective way to improve the learning speed , effectively suppress the minimum defects that the traditional neural network easily trapped in, and shorten the autonomous learning time. All these proves that the Elman neural network is an effective way to diagnose the steam turbine.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">We first recall the sufficient conditions for the existence of a periodic output of a modified Elman neural network ...<div style="text-align:justify;"> <span style="font-family:Verdana;">We first recall the sufficient conditions for the existence of a periodic output of a modified Elman neural network with a periodic input found by using Mawhin’s continuation theorem of coincidence degree theory. Using this result, we obtain sufficient conditions for the existence of a periodic output for an output hidden feedback Elman neural network with a periodic input. Examples illustrating these sufficient conditions are given.</span> </div>展开更多
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi...Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.展开更多
An MI.P(Multi-Layer Perception)/Elman neural network is proposed in thispaper, which realizes classification with memory of past events using the real-time classificationof MI.P and the memorial functionality of Elman...An MI.P(Multi-Layer Perception)/Elman neural network is proposed in thispaper, which realizes classification with memory of past events using the real-time classificationof MI.P and the memorial functionality of Elman. The system's sensitivity for the memory of pastevents ean be easily reconfigured without retraining the whole network. This approach can he usedfor both misuse and anomaly detection system. The intrusion detection systems(TDSs) using the hybridMLP/Elman neural network are evaluated by the intrusion detection evaluation data sponsored by U.S.Defense Advanced Research Projects Agency CDARPA) Ihc results of experiment are presented inReceiver Operating Characteristic CROC) curves. Thc capabilites of these IDSs to identify DenyofService(DOS) and probing attacks are enhanced.展开更多
文摘A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.
文摘In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.
基金Supported by National Natural Science Foundation of China(61001125)~~
文摘[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing during 1951-2010, the Elman artificial neural network model was applied to predict the temperature. [Result] This simulation result suggested that the relative error was small and can have a good simulation to the future temperature changes. [Conclusion] The prediction result can guide agricultural production and further apply to the field of pricing the weather derivative products.
基金supported by Research Fund for Doctoral Program of Higher Education of China (No.20020183003)
文摘From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.
基金Project(2012T50331)supported by China Postdoctoral Science FoundationProject(2008AA092301-2)supported by the High-Tech Research and Development Program of China
文摘Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.
基金National Natural Science Foundation of China(No.2 996 5 0 0 1) and Natural Science Foundation of InnerMongolia(No.2 0 0 2 2 0 80 2 0 115 )
文摘This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. The Elman recurrent network was applied to non-linear multivariate calibration. In this case, by means of optimization, the wavelet function, decomposition level and number of hidden nodes for WPTERNN method were selected as D4, 5 and 5 respectively. A program PWPTERNN was designed to perform multicomponent kinetic determination. The relative standard error of prediction(RSEP) for all the components with WPTERNN, Elman RNN and PLS were 3.23%, 11.8% and 10.9% respectively. The experimental results show that the method is better than the others.
基金Project(31200748)supported by the National Natural Science Foundation of China
文摘Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacokinetics parameters,nonlinear mixed effects model(NONMEM),has the abuses of tedious work and plenty of man-made jamming factors.The Elman feedback neural network was built.The relationships between the patients’plasma concentration of remifentanil and time,patient’age,gender,lean body mass,height,body surface area,sampling time,total dose,and injection rate through network training were obtained to predict the plasma concentration of remifentanil,and after that,it was compared with the results of NONMEM algorithm.In conclusion,the average error of Elman network is 6.34%,while that of NONMEM is 18.99%.The absolute average error of Elman network is 27.07%,while that of NONMEM is 38.09%.The experimental results indicate that Elman neural network could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error.For the characteristics of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetic and pharmacodynamics.
文摘The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.
基金Supported by Cultivation Project of Key and Emerging DisciplinesAnhui Academy of Agricultural Sciences(14A0520)+3 种基金Youth Innovation Foundation Project of DeanAnhui Academy of Agricultural Sciences(15B0520)Construction Item of Science Technology Innovation GroupAnhui Academy of Agricultural Sciences(13C0506)
文摘In the present study, ELMAN artificial neural network model was developed to predict the change of NH3-N in aquaculture water. The in- dexes including feed ration, dissolved oxygen in water, water temperature, air temperature, water turbidity, rainfall were recorded and chosen as the input variables, while the NHz-N content in the corresponding pond was chosen as output variable. The above data were collected everyday from June to October in 2014 and were used to develop model in this test, and the data collected in November of 2014 were chosen to evaluate the developed model. The results showed that the changing trend of NH3-N in aquaculture water could be simulated well by the model, the predictive absolute error mean was 0.016 mg/L, and Nash-Sutcliffe efficiency coefficient was 0.74. The prediction model based on ELMAN neural network had a strong ability to describe the nonlinear dynamic changes of NH3-N content in aquaculture water, and it showed the good adaptability and accu- racy in practical application.
文摘The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time delay characteristics, presented use feed forward coupling compensation method, to eliminate the coupling effect between temperature and pressure. In this paper, the Elman neural network controller is designed for the first time, and the simulation results show that the response time of Elman neural network controller is shorter, the system is more stable and the overshoot is small.
文摘This paper introduces a kind of diagnosis principle and learning algorithm of steam turbine fault diagnosis which based on Elman neural network. Comparing the results of the Elman neural network and the traditional BP neural network diagnosis, the results shows that Elman neural network is an effective way to improve the learning speed , effectively suppress the minimum defects that the traditional neural network easily trapped in, and shorten the autonomous learning time. All these proves that the Elman neural network is an effective way to diagnose the steam turbine.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">We first recall the sufficient conditions for the existence of a periodic output of a modified Elman neural network with a periodic input found by using Mawhin’s continuation theorem of coincidence degree theory. Using this result, we obtain sufficient conditions for the existence of a periodic output for an output hidden feedback Elman neural network with a periodic input. Examples illustrating these sufficient conditions are given.</span> </div>
基金supported by the ‘‘Detection of very low-flux background neutrons in China Jinping Underground Laboratory’’ project of the National Natural Science Foundation of China(No.11275134)
文摘Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.
文摘An MI.P(Multi-Layer Perception)/Elman neural network is proposed in thispaper, which realizes classification with memory of past events using the real-time classificationof MI.P and the memorial functionality of Elman. The system's sensitivity for the memory of pastevents ean be easily reconfigured without retraining the whole network. This approach can he usedfor both misuse and anomaly detection system. The intrusion detection systems(TDSs) using the hybridMLP/Elman neural network are evaluated by the intrusion detection evaluation data sponsored by U.S.Defense Advanced Research Projects Agency CDARPA) Ihc results of experiment are presented inReceiver Operating Characteristic CROC) curves. Thc capabilites of these IDSs to identify DenyofService(DOS) and probing attacks are enhanced.