设计了一种线性补偿低温漂高电源抑制比带隙基准电压源电路。带隙基准核心电路采用三支路共源共栅电流镜结构,提高电路电源抑制比。补偿电路采用分段补偿原理,在低温阶段,加入一段负温度系数电流,在高温阶段,加入一段正温度系数电流,通...设计了一种线性补偿低温漂高电源抑制比带隙基准电压源电路。带隙基准核心电路采用三支路共源共栅电流镜结构,提高电路电源抑制比。补偿电路采用分段补偿原理,在低温阶段,加入一段负温度系数电流,在高温阶段,加入一段正温度系数电流,通过补偿,使带隙基准输出电压的精确度大大提高,达到降低温度系数的目的;同时电流镜采用共源共栅结构,不仅提高电路的电源抑制比,而且可以抑制负载对镜像晶体管电压的影响。基于0.5μm CMOS工艺,使用Cadence Spectre对电路仿真,结果表明,在-50^+125℃温度范围内,基准输出电压的温度系数为2.62×10^(-6)/℃,低频时的电源抑制比(PSRR)高达88 d B。展开更多
文摘设计了一种线性补偿低温漂高电源抑制比带隙基准电压源电路。带隙基准核心电路采用三支路共源共栅电流镜结构,提高电路电源抑制比。补偿电路采用分段补偿原理,在低温阶段,加入一段负温度系数电流,在高温阶段,加入一段正温度系数电流,通过补偿,使带隙基准输出电压的精确度大大提高,达到降低温度系数的目的;同时电流镜采用共源共栅结构,不仅提高电路的电源抑制比,而且可以抑制负载对镜像晶体管电压的影响。基于0.5μm CMOS工艺,使用Cadence Spectre对电路仿真,结果表明,在-50^+125℃温度范围内,基准输出电压的温度系数为2.62×10^(-6)/℃,低频时的电源抑制比(PSRR)高达88 d B。