基于0.18μm CMOS工艺设计了一种低噪声、高电源电压抑制比(PSRR)的新型带隙基准源(BGR)。使用低噪声的垂直双极结型晶体管取代MOS晶体管作为运算放大器输入,削减了低频闪烁噪声;通过引入三输入的运算放大器将电源扰动传递到电流管的栅...基于0.18μm CMOS工艺设计了一种低噪声、高电源电压抑制比(PSRR)的新型带隙基准源(BGR)。使用低噪声的垂直双极结型晶体管取代MOS晶体管作为运算放大器输入,削减了低频闪烁噪声;通过引入三输入的运算放大器将电源扰动传递到电流管的栅极,极大程度地降低了电源纹波对输出基准电压的干扰;并通过RC低通滤波器进一步改善噪声和PSRR性能;利用修调电路修调工艺偏差,实现了良好的温度特性。实测结果表明,该BGR的PSRR在57.7 Hz下为-108 d B,与仿真结果基本一致(-102.3 d B@50 Hz);输出电压噪声在10 Hz时为42.20 n V/√Hz,通过新提出的测试方法在0.1~1 k Hz测得总噪声电压有效值低于0.503 5μV;在-40~125℃,基准电压温度系数可以修调至20×10^(-6)/℃以下,最小值仅14.09×10^(-6)/℃;BGR面积为254.1μm×370.0μm,功耗约为8.6μA@3 V。展开更多
文摘基于0.18μm CMOS工艺设计了一种低噪声、高电源电压抑制比(PSRR)的新型带隙基准源(BGR)。使用低噪声的垂直双极结型晶体管取代MOS晶体管作为运算放大器输入,削减了低频闪烁噪声;通过引入三输入的运算放大器将电源扰动传递到电流管的栅极,极大程度地降低了电源纹波对输出基准电压的干扰;并通过RC低通滤波器进一步改善噪声和PSRR性能;利用修调电路修调工艺偏差,实现了良好的温度特性。实测结果表明,该BGR的PSRR在57.7 Hz下为-108 d B,与仿真结果基本一致(-102.3 d B@50 Hz);输出电压噪声在10 Hz时为42.20 n V/√Hz,通过新提出的测试方法在0.1~1 k Hz测得总噪声电压有效值低于0.503 5μV;在-40~125℃,基准电压温度系数可以修调至20×10^(-6)/℃以下,最小值仅14.09×10^(-6)/℃;BGR面积为254.1μm×370.0μm,功耗约为8.6μA@3 V。