The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on ...The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on its crystalline structure, the hole and electron mobilities of CBP were calculated. A detailed comparison between experimental and theoretical results is necessary for further understanding its charge transport properties. In order to do this, charge mobilities at zero electric field, μ(0), were deduced from experimental data as a link between experimental and theoretical data. It was found that the electron transport of CBP is less affected by traps compared with its hole transport. This unusual phenomenon can be understood through the distributions of frontier molecular orbitals. We showed that designing materials with frontier molecular orbitals localized at the center of the molecule has the potency to reduce the influence of traps on charge transport and provide new insights into designing high mobility charge transport materials.展开更多
Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(...Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(OLEDs), organic field effect transistors(OFETs), and organic solar cells(OSCs). Especially, great progresses have been made of pyrene-based organic semiconductors for OFETs in past decades. Due to the difference of molecular structure, pyrene-based organic semiconductors are divided into three categories, pyrene as terminal group, pyrene as center core and fused pyrene derivatives. This minireview gives a brief introduction of the structure-property relationship and application in OFETs about most of pyrene-based semiconducting materials since 2006,illustrating that pyrene is a good building block to construct semiconductors with superior transport property for OFETs. Finally, we provide a summary concerning the methodology to improve the transport property of the pyrene-based semiconducting materials as well as an outlook.展开更多
It is a common phenomenon for organic semi- conductors to crystallize in two or more polymorphs, leading to various molecular packings and different charge transport properties. Therefore, it is a crucial issue of tun...It is a common phenomenon for organic semi- conductors to crystallize in two or more polymorphs, leading to various molecular packings and different charge transport properties. Therefore, it is a crucial issue of tuning molec- ular crystal polymorphs (i.e., adjusting the same molecule with different packing arrangements in solid state) towards efficient charge transport and high performance devices. Here, the choice of solvent had a marked effect on con- trolling the growth of a-phase ribbon and β-phase platelet during crystallization for an indenofluorene (IF) π-extended tetrathiafulvalene (TTF)-based cruciform molecule, named as IF-TTF. The charge carrier mobility of the a-phase IF-TTF crystals was more than one order of magnitude higher than that of β-phase crystals, suggesting the importance of reasonably tuning molecular packing in solid state for the improvement of charge transport in organic semiconductors.展开更多
本文简要地介绍了有机半导体中载流子迁移率的几种模型,着重阐述了测量有机半导体中载流子迁移率的各种方法的测试原理。主要有如下几种:稳态(CW)直流电流-电压特性法(steady-state DC JV),飞行时间法(time of flight,TOF),瞬态电致发光...本文简要地介绍了有机半导体中载流子迁移率的几种模型,着重阐述了测量有机半导体中载流子迁移率的各种方法的测试原理。主要有如下几种:稳态(CW)直流电流-电压特性法(steady-state DC JV),飞行时间法(time of flight,TOF),瞬态电致发光法(transient electroluminescence,transient EL),瞬态电致发光法的修正方法即双脉冲方波法和线性增压载流子瞬态法(carrier extraction by linearly increasing voltage,CELIV),暗注入空间电荷限制电流(dark injection space charge limited current,DI SCLC),场效应晶体管方法(field-effect transistor,FET),时间分辨微波传导技术(time-resolved microwave conductivity technique,TRMC),电压调制毫米波谱(voltage-modulated millimeter-wave spectroscopy,VMS)光诱导瞬态斯塔克谱方法(photoinducedtransient Stark spectroscopy),阻抗(导纳)谱法(impedance(admittance)spectroscopy)。说明了各种实验方法的应用范围、使用条件和优缺点。展开更多
基金supported by the National Key Basic Research and Development Program of China (2009CB623604)the National Natural Science Foundation of China (50990060, 51073809 and 21161160447)
文摘The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on its crystalline structure, the hole and electron mobilities of CBP were calculated. A detailed comparison between experimental and theoretical results is necessary for further understanding its charge transport properties. In order to do this, charge mobilities at zero electric field, μ(0), were deduced from experimental data as a link between experimental and theoretical data. It was found that the electron transport of CBP is less affected by traps compared with its hole transport. This unusual phenomenon can be understood through the distributions of frontier molecular orbitals. We showed that designing materials with frontier molecular orbitals localized at the center of the molecule has the potency to reduce the influence of traps on charge transport and provide new insights into designing high mobility charge transport materials.
基金supported by the National Natural Science Foundation of China(21325416)
文摘Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(OLEDs), organic field effect transistors(OFETs), and organic solar cells(OSCs). Especially, great progresses have been made of pyrene-based organic semiconductors for OFETs in past decades. Due to the difference of molecular structure, pyrene-based organic semiconductors are divided into three categories, pyrene as terminal group, pyrene as center core and fused pyrene derivatives. This minireview gives a brief introduction of the structure-property relationship and application in OFETs about most of pyrene-based semiconducting materials since 2006,illustrating that pyrene is a good building block to construct semiconductors with superior transport property for OFETs. Finally, we provide a summary concerning the methodology to improve the transport property of the pyrene-based semiconducting materials as well as an outlook.
基金supported by Beijing NOVA Programme(Z131101000413038)Beijing Local College Innovation Team Improve Plan(IDHT20140512)+2 种基金the National Natural Science Foundation of China(91433115,91222203,91233205 and 51222306)the Ministry of Science and Technology of China(2013CB933403 and 2013CB933504)the University of Copenhagen
文摘It is a common phenomenon for organic semi- conductors to crystallize in two or more polymorphs, leading to various molecular packings and different charge transport properties. Therefore, it is a crucial issue of tuning molec- ular crystal polymorphs (i.e., adjusting the same molecule with different packing arrangements in solid state) towards efficient charge transport and high performance devices. Here, the choice of solvent had a marked effect on con- trolling the growth of a-phase ribbon and β-phase platelet during crystallization for an indenofluorene (IF) π-extended tetrathiafulvalene (TTF)-based cruciform molecule, named as IF-TTF. The charge carrier mobility of the a-phase IF-TTF crystals was more than one order of magnitude higher than that of β-phase crystals, suggesting the importance of reasonably tuning molecular packing in solid state for the improvement of charge transport in organic semiconductors.