The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/gu...The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/guanine nucleotides are explored by using B3LYP hybrid functional and IEF-PCM salvation models. For the trans-[Pt(H2O)2(NH3)(pip)]2+ and trans-[PtCl(H2O)(NH3)(pip)]+ complexes,the computed barrier heights in aqueous solution are 13.5/13.5 and 11.6/11.6 kcal/mol from trans-Pt-chloroaqua complex to trans/cis-monoadduct for adenine and guanine,and the corresponding values are 20.7/20.7 and 18.8/18.8 kcal/mol from trans-Pt-diaqua complex to trans/cis-monoadduct for adenine and guanine,respectively. For trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+,the corresponding values are 21.5/21.3 and 19.4/19.4 kcal/mol,and 26.0/26.0 and 20.7/20.8 kal/mol for adenine and guanine,respectively. Our calculations demonstrate that the barrier heights of chloroaqua are lower than the corresponding values of diaqua for adenine and guanine. In addition,the free energies of activation for guanine in aqueous solution are all smaller than that for adenine,which predicts a preference of 1.9 kcal/mol when trans-[PtCl(H2O)(NH3)(pip)]+ and trans-[Pt(H2O)2(NH3)(pip)]2+ are the active agents and ~1.9 and ~ 5.3 kcal/mol when trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+ are the active agents,respectively. For the reaction of trans-Pt-chloroaqua (or diaqua) to cis-monoadduct,we obtain the same transition-state structure as from the reaction of trans-Pt-chloroaqua (or diaqua) to trans-monoadduct,which seems that the trans-Pt-chloroaqua (or diaqua) complex can generate trans-or cis-monoadduct via the same transition-state.展开更多
Ab initio potential surface of oxidative addition of CH4 to coordinatively unsaturated PtC12 is presented. The electron correlation has a big effect on the transition state and activation energy.
A square wave voltammetry (DPV) method for trans-Pt[Cl2(Dimethylamine)(isopropylamine)] determination is developed. To this end, all the chemical and instrumental variables affecting the determination of trans-Pt[Cl2(...A square wave voltammetry (DPV) method for trans-Pt[Cl2(Dimethylamine)(isopropylamine)] determination is developed. To this end, all the chemical and instrumental variables affecting the determination of trans-Pt[Cl2(Dimethylamine) (isopropylamine)] are optimized. From studies of the mechanisms governing the electrochemical response of trans-Pt[Cl2(Dimethylamine)(isopropylamine)], it was concluded that it was an electrochemically reversible system with an adsorptive oxidation phenomenon. Under optimal conditions, the variation of analytical signal (Ip) with trans-Pt[Cl2(Dimethylamine)(isopropylamine)] concentration was linear in the 0.05 μg·mL-1 to 10 μg·mL-1 range, with a LOD 91 μg·mL-1 of and a LOQ of 303 μg·mL-1, a RSD 1.10% and Er 0.72%. The optimized method was applied to the determination of trans-Pt[Cl2(Dimethylamine)(isopropylamine)] in biological fluids, in human urine and synthetic urine.展开更多
Several methods including molecular mechanics, molecular dynamics, ONIOM that combines quantum chemistry with molecular mechanics and standard quantum chemistry are used to study the configuration and electron structu...Several methods including molecular mechanics, molecular dynamics, ONIOM that combines quantum chemistry with molecular mechanics and standard quantum chemistry are used to study the configuration and electron structures of an adduct of the DNA segment d(ATACATG*G*TACATA)·d(TATGTACCATGTAT) with cis-[Pt(NH3)(2-Picoline)]2+. The investigation shows that the configuration optimized by ONIOM is similar to that determined by NMR. Strong chemical bonds between Pt of the complex and two N7s of neighboring guanines in the DNA duplex and hydrogen bond between the NH3 of the complex and O6 of a nearby guanine have a large impact on the configuration of the adduct. Chemical bonds, the aforementioned hydrogen bond, and the interaction between a methyl of the complex and a methyl of the base in close proximity are critical for the complex to specifically recognize DNA.展开更多
Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtC...Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtCl6,or Pt(CuUPD-Pt2+)n/Au for K2PtCl4,where n denotes the number of UPD-redox replacement cycles).The electrochemical quartz crystal microbalance(EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity(SECA) for methanol oxidation in alkaline solution.In comparison with Pt(CuUPD-Pt2+)n/Au,Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity,and the maximum SECA was obtained to be as high as 35.7 mA ?g?1 at Pt(CuUPD-Pt4+)3/Au.The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency,and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuOx-reduction peaks.The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers,and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological,energy and environmental sciences and technologies.展开更多
基金supported from the National Natural Science Foundation of China (No. 20971056)
文摘The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/guanine nucleotides are explored by using B3LYP hybrid functional and IEF-PCM salvation models. For the trans-[Pt(H2O)2(NH3)(pip)]2+ and trans-[PtCl(H2O)(NH3)(pip)]+ complexes,the computed barrier heights in aqueous solution are 13.5/13.5 and 11.6/11.6 kcal/mol from trans-Pt-chloroaqua complex to trans/cis-monoadduct for adenine and guanine,and the corresponding values are 20.7/20.7 and 18.8/18.8 kcal/mol from trans-Pt-diaqua complex to trans/cis-monoadduct for adenine and guanine,respectively. For trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+,the corresponding values are 21.5/21.3 and 19.4/19.4 kcal/mol,and 26.0/26.0 and 20.7/20.8 kal/mol for adenine and guanine,respectively. Our calculations demonstrate that the barrier heights of chloroaqua are lower than the corresponding values of diaqua for adenine and guanine. In addition,the free energies of activation for guanine in aqueous solution are all smaller than that for adenine,which predicts a preference of 1.9 kcal/mol when trans-[PtCl(H2O)(NH3)(pip)]+ and trans-[Pt(H2O)2(NH3)(pip)]2+ are the active agents and ~1.9 and ~ 5.3 kcal/mol when trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+ are the active agents,respectively. For the reaction of trans-Pt-chloroaqua (or diaqua) to cis-monoadduct,we obtain the same transition-state structure as from the reaction of trans-Pt-chloroaqua (or diaqua) to trans-monoadduct,which seems that the trans-Pt-chloroaqua (or diaqua) complex can generate trans-or cis-monoadduct via the same transition-state.
文摘Ab initio potential surface of oxidative addition of CH4 to coordinatively unsaturated PtC12 is presented. The electron correlation has a big effect on the transition state and activation energy.
文摘A square wave voltammetry (DPV) method for trans-Pt[Cl2(Dimethylamine)(isopropylamine)] determination is developed. To this end, all the chemical and instrumental variables affecting the determination of trans-Pt[Cl2(Dimethylamine) (isopropylamine)] are optimized. From studies of the mechanisms governing the electrochemical response of trans-Pt[Cl2(Dimethylamine)(isopropylamine)], it was concluded that it was an electrochemically reversible system with an adsorptive oxidation phenomenon. Under optimal conditions, the variation of analytical signal (Ip) with trans-Pt[Cl2(Dimethylamine)(isopropylamine)] concentration was linear in the 0.05 μg·mL-1 to 10 μg·mL-1 range, with a LOD 91 μg·mL-1 of and a LOQ of 303 μg·mL-1, a RSD 1.10% and Er 0.72%. The optimized method was applied to the determination of trans-Pt[Cl2(Dimethylamine)(isopropylamine)] in biological fluids, in human urine and synthetic urine.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.20271009,20231010,29992590-1)the Major State Basic Research Development Programs(Grant No.G2000078101)+1 种基金the Key Research Projection of the Foundation for University Key Teacherthe Scientific Research Foundation for the Returned Overseas Chinese Scholars by the Ministry of Education.
文摘Several methods including molecular mechanics, molecular dynamics, ONIOM that combines quantum chemistry with molecular mechanics and standard quantum chemistry are used to study the configuration and electron structures of an adduct of the DNA segment d(ATACATG*G*TACATA)·d(TATGTACCATGTAT) with cis-[Pt(NH3)(2-Picoline)]2+. The investigation shows that the configuration optimized by ONIOM is similar to that determined by NMR. Strong chemical bonds between Pt of the complex and two N7s of neighboring guanines in the DNA duplex and hydrogen bond between the NH3 of the complex and O6 of a nearby guanine have a large impact on the configuration of the adduct. Chemical bonds, the aforementioned hydrogen bond, and the interaction between a methyl of the complex and a methyl of the base in close proximity are critical for the complex to specifically recognize DNA.
基金supported by the National Natural Science Foundation of China (20675029 & 90713018)the State Special Scientific Project on Water Treatment (2009ZX07212-001-06)
文摘Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtCl6,or Pt(CuUPD-Pt2+)n/Au for K2PtCl4,where n denotes the number of UPD-redox replacement cycles).The electrochemical quartz crystal microbalance(EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity(SECA) for methanol oxidation in alkaline solution.In comparison with Pt(CuUPD-Pt2+)n/Au,Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity,and the maximum SECA was obtained to be as high as 35.7 mA ?g?1 at Pt(CuUPD-Pt4+)3/Au.The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency,and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuOx-reduction peaks.The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers,and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological,energy and environmental sciences and technologies.