期刊文献+
共找到808篇文章
< 1 2 41 >
每页显示 20 50 100
Effect of rare earths surface treatment on tribological properties of carbon fibers reinforced PTFE composite under oil-lubricated condition 被引量:6
1
作者 上官倩芡 程先华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期584-589,共6页
The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Exper... The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved. 展开更多
关键词 CF/ptfe composites surface treatment tribological property oil-lubrication rare earths
下载PDF
Effect of Na3AlF6 Addition and Surface Modification of SiCp on the Microstructure and Mechanical Properties of SiCp/Al Composites 被引量:2
2
作者 WANG Hao YANG Xiaojian +1 位作者 XU Jianhang LIU Lianglan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期534-540,共7页
Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface o... Al-matrix composites reinforced with 56.5 vol% SiC were prepared by powder metallurgy with different amounts of additives and surface modifications of SiCp. The crystalline phase, morphology, elements on the surface of SiCp and the interface between SiCp and Al were characterized by XRD, SEM, EDS and EPMA. The results show that it is favorable for the reaction between TiO2-C on the surface of SiCp and Al at the SiCp-Al interface at 1 050 ℃. Besides, the process of Na3 AlF6 melting, dissolving and then contacting with Al2 O3 formed the NaF-AlF3-Al2 O3 system, which generated OAlF2-, promoting the dessolution of Al2 O3 film on the surface of Al powder. Na3 AlF6 meets the needs of chemical reaction in TiO2-C-Al system at the SiCpAl interface in the way of offering more molten Al. After 0.75 wt% Na3 AlF6 was added into raw materials, the whole TiO2-C film and most SiO2 film were destroyed and the interfacial bonding between SiCp and Al was keeping good, in which no obvious void and crack were observed. Meanwhile, no brittle Al4 C3 phase formed in the system. At this time, the flexure strength and density of samples presented optimal values, reaching up to 106.5 MPa and 90.77% respectively. 展开更多
关键词 SICP/AL composites powder METALLURGY ADDITIVES surface modification
下载PDF
Preparation of defect free ceramic/Ti composite membranes by surface modification and in situ oxidation 被引量:1
3
作者 ZHANG Dong-qiang YANG Ping +2 位作者 WU Jian-yang ZHAO Jing CHEN Yan-an 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3295-3304,共10页
Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes o... Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis.In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800°C for 2 h,and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously.The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely.The pore size distribution of the composite membrane is measured by bubble pressure method,the most probable aperture is about 3.12μm,while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23μm.After ultrasonic treatment,the slight weight change of membranes reveals no observable change,which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability. 展开更多
关键词 porous Ti CERAMIC TiO2 layer in situ oxidation composite membrane surface modification
下载PDF
Effect of Rare Earths on Tribological Properties of Carbon Fibers Reinforced PTFE Composites 被引量:14
4
作者 上官倩芡 程先华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期469-473,共5页
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroeth... Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved. 展开更多
关键词 ptfe composites carbon fiber surface treatment tensile properties tribological properties rare earths
下载PDF
Evaluation of Tribological Performance of PTFE Composite Filled with Rare Earths Treated Carbon Fibers under Water-Lubricated Condition 被引量:11
5
作者 包丹丹 程先华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期564-568,共5页
Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites fi... Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix. 展开更多
关键词 CF/ptfe composites surface treatment tribological property water-lubricated condition rare earths
下载PDF
Research progress in friction stir processing of magnesium alloys and their metal matrix surface composites: Evolution in the 21^(st )century
6
作者 Roshan Vijay Marode Tamiru Alemu Lemma +3 位作者 Nabihah Sallih Srinivasa Rao Pedapati Mokhtar Awang Adeel Hassan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2091-2146,共56页
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing... Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field. 展开更多
关键词 Magnesium alloys Friction stir processing Metal matrix composites LIGHTWEIGHT surface modification
下载PDF
Recent Advances in Interface Modification of Cu/graphite Composites and Layered Ternary Carbides of Modified Layer Candidate
7
作者 WEI Hongming LI Mingchao +4 位作者 LI Xiaoya ZHAN Wenyi LI Feiyang DAI Yanzhang ZOU Jianpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1061-1072,共12页
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo... We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites. 展开更多
关键词 Cu/graphite composites interfacial bonding surface modification WETTABILITY layered ternary carbides
下载PDF
Effect of surface modification on thermal expansion of Zr_(2)WP_(2)O_(12)/aromatic polyimides based composites 被引量:2
8
作者 Xin-Wei Shi Sen Zhang +4 位作者 Qiang Zhou Jing Li Bai-Lin Zhu Liu-Jie Xu Qi-Long Gao 《Tungsten》 EI CSCD 2023年第1期179-188,共10页
Surface modification is a fascinating way to improve the compounding effect between inorganic fillers and polymers.In this study,zirconium tungsten phosphate(ZWP) with negative thermal expansion was surface modified b... Surface modification is a fascinating way to improve the compounding effect between inorganic fillers and polymers.In this study,zirconium tungsten phosphate(ZWP) with negative thermal expansion was surface modified by silane coupling agent 3-(Trimethoxysilyl)propyl methacrylate.The effects of surface modification and the modification mechanism were analyzed in detail by X-ray diffractometer,scanning electron microscopy,Fourier transform infrared spectroscopy and thermal mechanical analysis.The surface modification could effectively reduce the thermal expansion properties of the composite.When the added amount of 3-methacryloxypropyl trimethoxysilaneSilane(trade name:KH570) is 0.50 wt%,the thermal expansion coefficient of ZWP/Aromatic polyimide composite decreased by 9.76%.The surface modification also can effectively improve the dielectric performance of aromatic polyimides.The present work provides one new way to improve the thermal expansion behavior of composites. 展开更多
关键词 Negative thermal expansion TUNGSTEN surface modification Polyimide composite Silane coupling agent
原文传递
Surface Modification of Nanometer TiO_2 and Effect of Preparing TiO_2/P(St-co-DVB) Composites by Dispersion Polymerization 被引量:1
9
作者 王静 冯亚青 +2 位作者 李祥高 谢建宇 李刚 《Transactions of Tianjin University》 EI CAS 2006年第4期252-257,共6页
Surface modification of nanometer titanium dioxide particles and effect of preparing TiO2/P (St-co-DVB) composites by dispersion polymerization are described. To introduce vinyl group onto the surface of titanium di... Surface modification of nanometer titanium dioxide particles and effect of preparing TiO2/P (St-co-DVB) composites by dispersion polymerization are described. To introduce vinyl group onto the surface of titanium dioxide particles, the titanium dioxide particles were surface-modified with a silicane coupling agent, methacryloylpropyltrimethoxysilicane. Polymer encapsulation in the presence of either modified-titanium dioxide particles or unmodified-titanium dioxide particles was carried out by dispersion polymerization of styrene, divinylbenzene in ethanol medium with polyvinylpyrroliclone as stabilizer, and 2, 2'-azobis(isobutyronitrile) as initiator. The modified-titanium dioxide was analyzed with Fourier-transform infrared spectroscopy(FTIR), UV-Vis spectrophotometer, thermo-gravimetric analysis and transmission microscope. The polymer encapsulation of modified-titanium dioxide and unmodified-titanium dioxide particles was confirmed with FTIR and transmission electron microscope. Results show that compared with unmodified-titanium dioxide, modified-titanium dioxide is more suitable for preparing inorganic core/orclanic shell composites. 展开更多
关键词 surface modification titanium dioxide POLYMERIZATION silicane coupling agent compositeS
下载PDF
The Studies on the Surface Organic Modification of Tourmaline Powder with Stearic Acid and Its Composite 被引量:1
10
作者 Yingmo Hu 《Open Journal of Composite Materials》 2014年第3期148-156,共9页
Stearic acid modified tourmaline powder had been investigated to improve the compatibility and dispersed stability between tourmaline and polymer matrix. The experimental results indicated that the activation index wa... Stearic acid modified tourmaline powder had been investigated to improve the compatibility and dispersed stability between tourmaline and polymer matrix. The experimental results indicated that the activation index was 100% and contact angle reached 120° when the ratio of the ore slurry is 5:50, the dosage of stearic acid and p-toluenesulfonic acid is 10% and 0.5% (of tourmaline powder’s quantity) respectively with reaction at 80°C for 6.0 h, and the modified tourmaline exhibited an excellent hydrophobic property. The introduction of stearic groups reduced the reunion of tourmaline particles clearly and improved the dispersivity in polymers, and the amount of negative ions released of modified tourmaline increased obviously for both modified tourmaline powders and its composite with polyamide-66 compared to the unmodified tourmaline. Moreover, the structure of modified tourmaline was also characterized by means of Fourier Transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, scanning electron microscope. 展开更多
关键词 TOURMALINE Stearic ACID surface modification NEGATIVE ION composites
下载PDF
Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites 被引量:10
11
作者 LÜ Pin-hui WANG Xiao-feng +2 位作者 DONG Cui-ge PENG Chao-qun WANG Ri-chu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2567-2577,共11页
The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with C... The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%. 展开更多
关键词 SiCp/Al composite surface modification electroless plating mechanical properties interfacial bonding
下载PDF
高温气相环境对PTFE/PPS复合膜性能影响 被引量:2
12
作者 崔开慧 冯厦厦 +2 位作者 周明 仲兆祥 邢卫红 《膜科学与技术》 CAS CSCD 北大核心 2023年第2期49-58,67,共11页
聚四氟乙烯/聚苯硫醚(PTFE/PPS)复合膜是除尘领域运用最广泛的复合膜之一,其使用寿命受烟气参数影响显著.本研究针对PTFE/PPS复合膜的实际应用条件,通过高温气相腐蚀对PTFE/PPS复合膜进行抗老化性能测试,在120~240℃温度范围内,以空气... 聚四氟乙烯/聚苯硫醚(PTFE/PPS)复合膜是除尘领域运用最广泛的复合膜之一,其使用寿命受烟气参数影响显著.本研究针对PTFE/PPS复合膜的实际应用条件,通过高温气相腐蚀对PTFE/PPS复合膜进行抗老化性能测试,在120~240℃温度范围内,以空气为气氛,研究了氧存在条件对PTFE/PPS复合膜的耐老化性能影响;基于腐蚀气体(SO_(2))浓度、腐蚀温度与时间,建立了膜材料拉伸强度的响应曲面模型.研究结果表明,氧气使复合膜中的PPS支撑体产生氧化交联反应使其纬向断裂强力有所上升,200℃老化48 h后达到最大值2132.2 N;由响应面可知,增加温度与SO_(2)浓度对PTFE/PPS复合膜的断裂拉伸性能的衰减影响显著,当温度从180℃增加到240℃时,其经向断裂强力衰减至初始值的90.97%;当SO_(2)浓度由2096 mg/m^(3)增加至2620 mg/m^(3)时,经向断裂强力衰减至初始值的98.12%.该工作为复合膜在烟气净化中的应用条件优化提供了依据. 展开更多
关键词 ptfe/PPS复合膜 空气老化 二氧化硫 力学性能 响应面方法
下载PDF
Study of the Superficial Modification of Sisal Fibres with Lignin, and Its Use As a Reinforcement Agent in Cementitious Composites 被引量:1
13
作者 Plínio B.Mundim Rondinele A.R.Ferreira +2 位作者 Leila A.C.Motta Mariana A.Henrique Daniel Pasquini 《Journal of Renewable Materials》 SCIE EI 2020年第8期891-903,共13页
The objective of this work was to evaluate different superficial treatments of sisal fibres employing lignin,and their use as a reinforcement agent in cementitious composites.The treatments consisted of superficially ... The objective of this work was to evaluate different superficial treatments of sisal fibres employing lignin,and their use as a reinforcement agent in cementitious composites.The treatments consisted of superficially impregnating sisal fibres(S)with organosolv lignin(LO),organosolv lignin and glutaraldehyde(LOG),Kraft lignin(LK)and Kraft lignin and glutaraldehyde(LKG).The fibre modifications were verified by FTIR-ATR and SEM analyzes,and the presence of lignin on the surface of the fibres was evidenced,confirming the effectiveness of the treatments.The mechanical,thermal(by TGA)and water absorption properties of the fibres before and after the modifications were also investigated.After treatment,the modified fibres presented an expressive reduction of the water absorption and did not show significant changes in the mechanical properties when compared with the natural unmodified sisal fibre(SNAT).It was verified an increase in the thermal stability of the treated fibres which can be attributed to the insertion of lignin on the fibres.To evaluate the performance of the fibres in the cementitious composites,cement plates(CP)were produced with different treated fibres(CP-SLOG,CP-SLO,CP-SLKG,CP-SLK)and fibres without treatment(CP-SNAT).The composites were evaluated concerning to the water absorption,porosity and mechanical properties.The fractured regions were also investigated by SEM.All composites prepared showed similar values of absorption and porosity indexes.From the mechanical properties,the composites prepared with modified fibres showed a significant increase in the modulus of rupture and modulus of elasticity compared with CP-SNAT,while toughness was similar to all samples.From the SEM images,it was observed that the modified fibres immersed in the cementitious plates showed no degradation,indicating that the impregnation of lignin acted as a protective agent of the fibres.Therefore,the treatments of the fibres with lignin led to a significant improvement in the properties of the composites generating a treatment with potential for industrial application. 展开更多
关键词 Cementitious composites SISAL LIGNIN surface modification
下载PDF
Effects of Treated Nano-Lanthanum Oxide on the Mechanical and Tribological Properties of PTFE Nanocomposites
14
作者 汪怀远 冯新 +1 位作者 史以俊 陆小华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期40-44,共5页
The surface of nano-La2O3 was modified. Effects of various amount of treated nano-La2O3 on the mechanical and tribological properties of PTFE were investigated. Mechanisms that contribute to the properties of PTFE com... The surface of nano-La2O3 was modified. Effects of various amount of treated nano-La2O3 on the mechanical and tribological properties of PTFE were investigated. Mechanisms that contribute to the properties of PTFE composites are also studied. Results indicate that treated nano-La2O3 can increase the mechanical and tribological properties of PTFE simultaneously. With 1wt.% of treated nano-La2O3, the rigidity, tensile strength, notched impact and wear resistance of PTFE nanocomposites were increased by 25.1%, 14.1%, 20.3% and 36.7% respectively over pure PTFE. The degradation temperature of PTFE was improved by 14 ℃ by adding only 5% nano-La2O3. The wear resistance reached the highest value when the composite contained 10% treated nano-La2O3, which is about 110 times higher than pure PTFE. Furthermore, treated nano-La2O3 strengthened the bonding between the transfer film and the counterpart surface. A coherent and smooth transfer film on the counterpart surface of PTFE composites can be observed, while pure PTFE can not do. 展开更多
关键词 ptfe nanocomposites surface modification tribological and mechanical properties rare earths
下载PDF
金属锌与PTFE改性建筑陶瓷表面的润湿性能研究
15
作者 萧礼标 姚蔚 +4 位作者 刘一军 汪庆刚 李凯凯 吴洋 陆龙生 《表面技术》 EI CAS CSCD 北大核心 2023年第2期360-368,共9页
目的结合金属锌和聚四氟乙烯(PTFE)改性技术,制备具有微纳复合结构表面的超疏水、防污染、自清洁建筑陶瓷。方法基于现有工业陶瓷生产方法,在陶瓷釉料中掺入质量分数为60%的金属锌粉,通过高温烧结在陶瓷表面构建微纳复合结构,随后在其... 目的结合金属锌和聚四氟乙烯(PTFE)改性技术,制备具有微纳复合结构表面的超疏水、防污染、自清洁建筑陶瓷。方法基于现有工业陶瓷生产方法,在陶瓷釉料中掺入质量分数为60%的金属锌粉,通过高温烧结在陶瓷表面构建微纳复合结构,随后在其表面喷涂PTFE涂料进行低表面能处理,从而制得超疏水性建筑陶瓷。利用扫描电镜和光学轮廓仪,观察陶瓷表面微纳形貌。通过X射线能谱仪,对陶瓷表面的化学元素组成进行分析。使用光学测量系统,测量水滴在陶瓷表面的静态接触角和滚动角。根据测试结果分析5种烧结温度对陶瓷表面微纳结构和润湿性能的影响。结果随着烧结温度的升高,陶瓷表面的均方根粗糙度(Sq)先增大后减小,对应的疏水性能先增强后减弱。在1000℃(保温10 min)烧结温度下,Sq达到最大值,为(17.52±2.54)μm,表现出最优的超疏水性能,其静态接触角和滚动角分别为165.6°和8.2°,并且该表面展示出良好的防污能力和耐磨性。结论液滴与陶瓷表面接触时,由金属锌粉烧结形成的微纳复合结构和低表面能的PTFE起耦合协同作用,陶瓷表面与液滴形成固-液-气三相复合接触的Cassie-Baxter状态,即阻隔的空气垫阻碍液体浸入微纳复合结构之中。随着陶瓷表面粗糙度的增加,气-液接触面积增加,从而使得疏水性能得到提升。 展开更多
关键词 金属锌 ptfe 建筑陶瓷 烧结温度 微纳复合结构 超疏水表面
下载PDF
填充改性PTFE复合材料蠕变性能的研究进展
16
作者 付建伟 白鲸 +3 位作者 蔡醇洋 倪涛富 罗于强 喻培浩 《有机氟工业》 CAS 2023年第3期56-58,共3页
介绍了近年来国内对不同填料填充PTFE复合材料压缩蠕变性能的研究,并指出了未来研究的方向。
关键词 ptfe 填充改性 复合材料 压缩蠕变
下载PDF
Wettability Control between Oleophobic/Superhydrophilic and Superoleophilic/Superhydrophobic Characteristics on the Modified Surface Treated with Fluoroalkyl End-Capped Oligomers/Micro-Sized Polystyrene Particle Composites
17
作者 Hideo Sawada Koki Arakawa Yuta Aomi 《Open Journal of Composite Materials》 2022年第1期41-55,共15页
Fluoroalkyl end-capped vinyltrimethoxysilane-<i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i>&l... Fluoroalkyl end-capped vinyltrimethoxysilane-<i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i></span><span style="font-family:Verdana;">-dimethylacrylamide cooli</span><span style="font-family:;" "=""><span style="font-family:Verdana;">gomer [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHSi(OMe)</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHC(=O)NMe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">;R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> = CF(CF</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)OC</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">F</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;">:</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] was synthesized by reaction of fluoroalkanoyl peroxide [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-C(=O)O-O(O=)C-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] with vinyltrimethoxysilane (VM) and </span><i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i></span><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;">dimethylacrylamide (DMAA). The modified glass surface treated with the</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> cooligomeric nanoparticles [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] prepared under the sol-gel reaction of the cooligomer under alkaline conditions was found to exhibit an oleophobic/superhydrophilic property, although the corresponding fluorinated homooligomeric nanoparticles [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] afforded an </span><span style="font-family:Verdana;">oleophobic/hydrophobic property on the modified surface under similar </span><span style="font-family:Verdana;">con</span><span><span style="font-family:Verdana;">ditions. R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/</span><b><i><span style="font-family:Verdana;">PSt</span></i></b><span style="font-family:Verdana;"> (micro-sized</span></span> <span style="font-family:Verdana;">polystyrene particles) composites, which were prepared by the sol-gel reac</span><span style="font-family:Verdana;">tions of the corresponding homooligomer and cooligomer in the presence of </span><b><i><span style="font-family:Verdana;">PSt </span></i></b><span style="font-family:Verdana;">particle under alkaline conditions, provided an oleophobic/superhydrophilic </span><span style="font-family:Verdana;">property on the modified surface. However, it was demonstrated that the</span><span><span style="font-family:Verdana;"> surface wettability on the modified surface treated with the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-</span></span><span><span style="font-family:Verdana;">SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/</span><b><i><span style="font-family:Verdana;">PSt</span></i></b><span style="font-family:Verdana;"> composites changes dramatically from oleophobic/superhydrophilic to superoleophilic/superhydrophilic </span><span style="font-family:Verdana;">and superoleophilic/superhydrophobic characteristics, increasing with </span><span style="font-family:Verdana;">greater </span><span><span style="font-family:Verdana;">feed ratios (mg/mg) of the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> homooligomer in homooligo</span></span><span style="font-family:Verdana;">mer/cooligo</span></span><span style="font-family:Verdana;">mer from 0 to 100 in the preparation of the composites. Such controlled surfac</span> 展开更多
关键词 Fluorinated Oligomeric composite Micro-Sized Polystyrene Particle surface modification surface Wettability Change Oleophobic/Superhydrophilic Property Superoleophilic/Superhydrophobic Property
下载PDF
Pores Created by Laser Surface Modification of Poly(vinylalcohol)-Collagen with Glycosaminoglycan Scaffold for Cell Culture in Tissue Engineering
18
作者 LI Qin-hua MO Xiao-hui LI Hui 《Chinese Journal of Biomedical Engineering(English Edition)》 2012年第1期22-28,共7页
A PVA-GAG-COL composite scaffold is fabricated by polyvinyl alcohol (PVA), glyeosaminoglycan (GAG) and collagen (COL). Laser surface modification technology is used to make holes on the surface of the scaffolds.... A PVA-GAG-COL composite scaffold is fabricated by polyvinyl alcohol (PVA), glyeosaminoglycan (GAG) and collagen (COL). Laser surface modification technology is used to make holes on the surface of the scaffolds. Inside and outside interconnection micro-porous structure is obtained. Bioeompatibility test of the scaffolds shows that PVA-GAG-COL scaffold can promote the adhesion and proliferation of the fibroblast. Also, fibroblast can grow normally on the scaffolds with pore diameter from 115 um to 255 um and pore distance from 500 um to 2000 um. PVA-GAG-COL scaffolds possess excellent cell biocompatibility. The porous structure is suitable for cell culture in tissue engineering. 展开更多
关键词 polyvinyl alcohol GLYCOSAMINOGLYCAN COLLAGEN tissue engineering composite scaffold laser surface modification
下载PDF
Plasma Surface Modification of Kevlar Fibers
19
作者 贺弘 李荣志 +2 位作者 朱鹤孙 孙慕瑾 胡宝蓉 《Journal of Beijing Institute of Technology》 EI CAS 1992年第1期66-74,共9页
Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the chan... Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the changes in the wetting property. ESCA and electron spin resonance were utilized to examine the chemical composition and the attached free radicals of the fiber surface. The results, together with changes in the magnitude of the contact-angle and the number of free radicals with time after the plasma treatment do not show any ageing effect. Single filament test revealed that the tensile strength was not impaired but even improved somewhat after the plasma treatment. The experiment shows that the interlaminar shear strength of Kevlar fiber reinforced epoxy resin compo- site is increased for more than 60%% after the treatment. 展开更多
关键词 KEVLAR surface modification composite materials adhsions/plasma graft
下载PDF
Effect of surface modification of ammonium polyphosphate-diatomite composite filler on the flame retardancy and smoke suppression of cellulose paper
20
作者 Huifang Zhao Lizheng Sha 《Journal of Bioresources and Bioproducts》 EI 2017年第1期30-35,共6页
Ammonium polyphosphate-diatomite composite filler(APP-diatomite composite filler)was modified with silane coupling agent KH550 to improve the flame retardancy of filled paper.Cone calorimeter was used to analyze the h... Ammonium polyphosphate-diatomite composite filler(APP-diatomite composite filler)was modified with silane coupling agent KH550 to improve the flame retardancy of filled paper.Cone calorimeter was used to analyze the heat and smoke releasing rates,as well as smoke toxicity of the filled paper.The distribution of the composite filler particles in paper and the morphology of the charred residues after combustion were investigated by scanning electron microscope(SEM),and the chemical structure of the charred residues was studied with fourier transform infrared spectroscopy(FTIR).Results show that the peak heat releasing rate(PHRR),total heat release(THR)and peak mass loss rate(PMLR)of the filled paper with the modified APP-diatomite decreased markedly,compared with those for the control paper,while the charred residue after combustion increased.In addition,the filled paper had an increased peak rate of smoke release(RSR)and increased total smoke release(TSR)and peak CO production rates,but a decreased peak CO_(2) production rate.It was also found that part of the carbon element in the charred residue of the paper loaded with the modified APP-diatomite was in the forms of C=C=C,C≡C and C≡N,and the charred residue had a relatively more intact structure without apparent fiber breakage and longitudinal cracks. 展开更多
关键词 PAPER flame retardant paper cellulose fibers surface modification ammonium polyphosphate(APP)-diatomite composite filler flame retardancy smoke suppression
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部