A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTF...A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51571033,11804022)the Science and Technology on Transient Impact Laboratory Foundation(No.6142606183208).
文摘A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.