PA6/PTFE blends with varying polytetrafluoroethylene content from 3% to 15%(mass fraction) were irradiated by 60Co gamma-ray with various doses(20,50 and 100 kGy) under ambient conditions.Moisture absorption test,U-no...PA6/PTFE blends with varying polytetrafluoroethylene content from 3% to 15%(mass fraction) were irradiated by 60Co gamma-ray with various doses(20,50 and 100 kGy) under ambient conditions.Moisture absorption test,U-notched Charpy impact test and quasi-static tension and bending were conducted to investigate the effect of irradiation on moisture absorption and mechanical properties of the blends.It is shown that the exposure of the blend to 60Co irradiation improves the tensile modulus,tensile strength and flexural modulus due to irradiation induced cross-linking in PA6 phase.However,the Charpy impact strength of the blends is much lower than that of the original PA6 and it decreases slightly with the increase of irradiation dose.Moreover,the flexural modulus increases to a maximum value and then decreases with further increasing the PTFE content,and the moisture absorption decreases with the increase of the PTFE content and irradiation dose.展开更多
The effects of polytetrafluoroethylene (PTFE) content on water-absorptivity, tensile strength, flexural strength, and notched impact strength of polytetrafluoroethylene/polyamide 6 (PTFE/PA6) and polytetrafluoroethyle...The effects of polytetrafluoroethylene (PTFE) content on water-absorptivity, tensile strength, flexural strength, and notched impact strength of polytetrafluoroethylene/polyamide 6 (PTFE/PA6) and polytetrafluoroethylene/polyamide 66 (PTFE/PA66) blends were investigated by water immersion test, uniaxial tensile test, three-point test, and Charpy impact fracture test. The water-absorptivity in the blend decreases with increasing PTFE content, which indicates that the PTFE phase restrains the polyamide phase from water absorption. For water-free blends, the addition of PTFE causes a reduction in tensile strength, while for water-absorbed PTFE/PA6 blends, the tensile strength increases with increasing PTFE. Simultaneously, the absorbed water improves the elongation, but results in a notable reduction in flexural strength of the blends. Although the addition of PTFE causes a reduction in notched impact strength of the blends, as compared to pure polyamide, the absorbed water has little effects on the notched impact strength of the blends. Finally, the effects of temperature and loading frequency on complex viscosity parameters of PTFE/PA6 and PTFE/PA66 melts were tested. It is found that the complex viscosity of PTFE/PA6 melt is reversed with increasing temperature and shear velocity, but that of PTFE/PA66 melt increases approximately in exponential form with increasing temperature. To fill polyamide with suitable mass percentage of PTFE can effectively reduce the viscosity of blend, and as a result, the molding and processing properties are improved.展开更多
The mechanical properties and material volume fractions of PTFE/Kevlar49/PA6 composite are studied. The focus of this paper is to get the relationship between the volume fraction of three constituents and the mechanic...The mechanical properties and material volume fractions of PTFE/Kevlar49/PA6 composite are studied. The focus of this paper is to get the relationship between the volume fraction of three constituents and the mechanical properties of the composite by doing tensile, hardness and wear test. The effect of the constituent volume fractions was evaluated. Short Kevlar49 fibers reinforced PA6 (Polyamide 6) with PTFE filler were studied in five different combinations. The results of the experiments show that the mechanical properties increase with Keviar fibers increase, then they decrease after the Kevlar fiber volume reaches one number.展开更多
The dynamic rheological behaviors are measured by small amplitude oscillatory shear on a rotational rheometer for a polystyrene (PS)/nylon 6 (PA6) blend compatibilized by a polystyrene grafted maleic anhydride (PS-g-M...The dynamic rheological behaviors are measured by small amplitude oscillatory shear on a rotational rheometer for a polystyrene (PS)/nylon 6 (PA6) blend compatibilized by a polystyrene grafted maleic anhydride (PS-g-MAH). The storage moduli versus angular frequency (G’-ω) data of the blends are fitted by Palierne model. The Palierne model fits the data basically well for the PA6-rich blends and the 70/6/30 (PS/PS-g-MAH/PA6) blend. The fitting results show that the PS-g-MAH has a fine compatibilizing effect on the PS/PA6 blends.展开更多
通过SEM观察和机械性能测试,研究了PA 6 UHMWPE HDPE g MAH共混合金的形态结构和性能。结果表明:加入HDPE g MAH可有效地改善共混物的相容性,增强两相界面间的粘结强度,降低分散相尺寸;同时还改善了共混物的机械性能,降低了熔体流动速... 通过SEM观察和机械性能测试,研究了PA 6 UHMWPE HDPE g MAH共混合金的形态结构和性能。结果表明:加入HDPE g MAH可有效地改善共混物的相容性,增强两相界面间的粘结强度,降低分散相尺寸;同时还改善了共混物的机械性能,降低了熔体流动速率,提高了常温和低温冲击强度,降低了吸水率。展开更多
The rheological behavior of blend, e.g. polypropylene,PP, with polyamide - 6, PA6, has been investigated.Results show that this blend is a pseudo plastic fluid and the amount of PA6 seems to be a dominator to influenc...The rheological behavior of blend, e.g. polypropylene,PP, with polyamide - 6, PA6, has been investigated.Results show that this blend is a pseudo plastic fluid and the amount of PA6 seems to be a dominator to influence all rheological properties. In addition to the expected influence by temperature generally for polymer, it has been found the amount of PA6 is valid in a range, e.g. 0-20% corresponding to the PP amount, i.e. in this range, the larger the PA6 added, the larger is the nonNewtonian index, n, and this is obviously especially for PP/PA6 blend with the high shear stress.展开更多
Polyamide (PA6) and polycarbonate (PC) were prepared by a Brabender mixer ( PLV- 151) at 240℃ with 30 rpm for duration of 8 and 6 minutes respectively. The epoxy resin (E) addition can lead to substantial mic...Polyamide (PA6) and polycarbonate (PC) were prepared by a Brabender mixer ( PLV- 151) at 240℃ with 30 rpm for duration of 8 and 6 minutes respectively. The epoxy resin (E) addition can lead to substantial microstructural changes in the PA6/PC blends. Scanning electron microscope (SEM) was used to observe the mixtures characterized by the domains of clearly segregated homophases and voids between the two polymers. PA6/PC of polyamide 6 and polycarbonate with epoxy resin addition under the composition ratio of 20/80, 20/80/1, 40/60/1 and 40/60, were tested to verify the key role of epoxy in promoting the compatibility of PA6 with PC during blending.展开更多
基金Project(10772156) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘PA6/PTFE blends with varying polytetrafluoroethylene content from 3% to 15%(mass fraction) were irradiated by 60Co gamma-ray with various doses(20,50 and 100 kGy) under ambient conditions.Moisture absorption test,U-notched Charpy impact test and quasi-static tension and bending were conducted to investigate the effect of irradiation on moisture absorption and mechanical properties of the blends.It is shown that the exposure of the blend to 60Co irradiation improves the tensile modulus,tensile strength and flexural modulus due to irradiation induced cross-linking in PA6 phase.However,the Charpy impact strength of the blends is much lower than that of the original PA6 and it decreases slightly with the increase of irradiation dose.Moreover,the flexural modulus increases to a maximum value and then decreases with further increasing the PTFE content,and the moisture absorption decreases with the increase of the PTFE content and irradiation dose.
基金Prqject(10572123) supported by the National Natural Science Foundation of China Project(05JJ30014) supported by the Natural Science Foundation of Hunan Province, China Project(05C100) supported by the Scientific Research Fund of Education Department of Hunan Province, China
文摘The effects of polytetrafluoroethylene (PTFE) content on water-absorptivity, tensile strength, flexural strength, and notched impact strength of polytetrafluoroethylene/polyamide 6 (PTFE/PA6) and polytetrafluoroethylene/polyamide 66 (PTFE/PA66) blends were investigated by water immersion test, uniaxial tensile test, three-point test, and Charpy impact fracture test. The water-absorptivity in the blend decreases with increasing PTFE content, which indicates that the PTFE phase restrains the polyamide phase from water absorption. For water-free blends, the addition of PTFE causes a reduction in tensile strength, while for water-absorbed PTFE/PA6 blends, the tensile strength increases with increasing PTFE. Simultaneously, the absorbed water improves the elongation, but results in a notable reduction in flexural strength of the blends. Although the addition of PTFE causes a reduction in notched impact strength of the blends, as compared to pure polyamide, the absorbed water has little effects on the notched impact strength of the blends. Finally, the effects of temperature and loading frequency on complex viscosity parameters of PTFE/PA6 and PTFE/PA66 melts were tested. It is found that the complex viscosity of PTFE/PA6 melt is reversed with increasing temperature and shear velocity, but that of PTFE/PA66 melt increases approximately in exponential form with increasing temperature. To fill polyamide with suitable mass percentage of PTFE can effectively reduce the viscosity of blend, and as a result, the molding and processing properties are improved.
文摘The mechanical properties and material volume fractions of PTFE/Kevlar49/PA6 composite are studied. The focus of this paper is to get the relationship between the volume fraction of three constituents and the mechanical properties of the composite by doing tensile, hardness and wear test. The effect of the constituent volume fractions was evaluated. Short Kevlar49 fibers reinforced PA6 (Polyamide 6) with PTFE filler were studied in five different combinations. The results of the experiments show that the mechanical properties increase with Keviar fibers increase, then they decrease after the Kevlar fiber volume reaches one number.
文摘The dynamic rheological behaviors are measured by small amplitude oscillatory shear on a rotational rheometer for a polystyrene (PS)/nylon 6 (PA6) blend compatibilized by a polystyrene grafted maleic anhydride (PS-g-MAH). The storage moduli versus angular frequency (G’-ω) data of the blends are fitted by Palierne model. The Palierne model fits the data basically well for the PA6-rich blends and the 70/6/30 (PS/PS-g-MAH/PA6) blend. The fitting results show that the PS-g-MAH has a fine compatibilizing effect on the PS/PA6 blends.
文摘 通过SEM观察和机械性能测试,研究了PA 6 UHMWPE HDPE g MAH共混合金的形态结构和性能。结果表明:加入HDPE g MAH可有效地改善共混物的相容性,增强两相界面间的粘结强度,降低分散相尺寸;同时还改善了共混物的机械性能,降低了熔体流动速率,提高了常温和低温冲击强度,降低了吸水率。
文摘The rheological behavior of blend, e.g. polypropylene,PP, with polyamide - 6, PA6, has been investigated.Results show that this blend is a pseudo plastic fluid and the amount of PA6 seems to be a dominator to influence all rheological properties. In addition to the expected influence by temperature generally for polymer, it has been found the amount of PA6 is valid in a range, e.g. 0-20% corresponding to the PP amount, i.e. in this range, the larger the PA6 added, the larger is the nonNewtonian index, n, and this is obviously especially for PP/PA6 blend with the high shear stress.
文摘Polyamide (PA6) and polycarbonate (PC) were prepared by a Brabender mixer ( PLV- 151) at 240℃ with 30 rpm for duration of 8 and 6 minutes respectively. The epoxy resin (E) addition can lead to substantial microstructural changes in the PA6/PC blends. Scanning electron microscope (SEM) was used to observe the mixtures characterized by the domains of clearly segregated homophases and voids between the two polymers. PA6/PC of polyamide 6 and polycarbonate with epoxy resin addition under the composition ratio of 20/80, 20/80/1, 40/60/1 and 40/60, were tested to verify the key role of epoxy in promoting the compatibility of PA6 with PC during blending.