期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy
1
作者 Dandan Xu Haijian Shao +1 位作者 Xing Deng Xia Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期567-597,共31页
As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as w... As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods. 展开更多
关键词 Deep learning wind power forecasting pv generation and forecasting hidden-layer information analysis topology optimization
下载PDF
PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy 被引量:5
2
作者 Yordanos Kassa Semero Jianhua Zhang Dehua Zheng 《CSEE Journal of Power and Energy Systems》 SCIE 2018年第2期210-218,共9页
This paper presents a hybrid approach for the forecasting of electricity production in microgrids with solar photovoltaic(PV)installations.An accurate PV power generation forecasting tool essentially addresses the iss... This paper presents a hybrid approach for the forecasting of electricity production in microgrids with solar photovoltaic(PV)installations.An accurate PV power generation forecasting tool essentially addresses the issues resulting from the intermittent and uncertain nature of solar power to ensure efficient and reliable system operation.A day-ahead,hourly mean PV power generation forecasting method based on a combination of genetic algorithm(GA),particle swarm optimization(PSO)and adaptive neuro-fuzzy inference systems(ANFIS)is presented in this study.Binary GA with Gaussian process regression model based fitness function is used to determine important input parameters that significantly influence the amount of output power of a PV generation plant;and an integrated hybrid algorithm combining GA and PSO is used to optimize an ANFIS based PV power forecasting model for the plant.The proposed modeling technique is tested based on power generation data obtained from Goldwind microgrid system found in Beijing.Forecasting results demonstrate the superior performance of the proposed method as compared with commonly used forecasting approaches.The proposed approach outperformed existing artificial neural network(ANN),linear regression(LR),and persistence based forecasting models,validating its effectiveness. 展开更多
关键词 ANFIS binary genetic algorithm feature selection hybrid method particle swarm optimization pv power forecasting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部