期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy
1
作者 Dandan Xu Haijian Shao +1 位作者 Xing Deng Xia Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期567-597,共31页
As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as w... As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods. 展开更多
关键词 Deep learning wind power forecasting pv generation and forecasting hidden-layer information analysis topology optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部