The NCEP 1°×1°reanalysis of June-to-September dataset between 2002 to 2009 is used in this study to conduct statistical analysis of the relationship between the environmental potential vorticity(PV)on 1...The NCEP 1°×1°reanalysis of June-to-September dataset between 2002 to 2009 is used in this study to conduct statistical analysis of the relationship between the environmental potential vorticity(PV)on 150 hPa located at the south edge of South Asia High(SAH)and TCs making landfall.The results show that 23 of the TCs are affected by the PV on 150 hPa located at the south edge of SAH between 2002 to2009,and three TCs'center pressure decline after the high-value environmental PV moves to the center of the TCs.These three TCs are Senlaku(0216),Bilis(0604)and Linfa(0903).Through diagnostic analysis from the viewpoint of isolines,we determined the relationship between the intensification of these TCs and the PV anomaly at high levels;the isentropic surface is close to the high level’s PV anomaly under the influence of the 150-hPa PV anomaly,leading to the decline of isentropic surfaces on both sides of the PV anomaly.Then the warm core of the middle and high levels of the TC strengthens and PV increases at the middle level,and both of them are beneficial to the reinforcement of the cyclonic vorticity in the low level.As a result,the center pressure of the TC declines.According to Wu’s theory of Slantwise Vorticity Development(SVD),the incline of the isentropic surfaces leads to the development of vertical vorticity,contributing to the vertical motion and the release of the latent heat.Then the warm core of the TC strengthens and the TC strengthens,too.Otherwise,piecewise PV inversion also shows that the high-level PV influences the mid-level more than the low level.展开更多
In this paper,by carrying out sensitivity tests of initial conditions and diagnostic analysis of physical fields,the impact factors and the physical mechanism of the unusual track of Morakot in the Taiwan Strait are d...In this paper,by carrying out sensitivity tests of initial conditions and diagnostic analysis of physical fields,the impact factors and the physical mechanism of the unusual track of Morakot in the Taiwan Strait are discussed and examined based on the potential vorticity(PV)inversion.The diagnostic results of NCEP data showed that Morakot's track was mainly steered by the subtropical high.The breaking of a high-pressure zone was the main cause for the northward turn of Morakot.A sensitivity test of initial conditions showed that the existence of upper-level trough was the leading factor for the breaking of the high-pressure zone.When the intensity was strengthened of the upper-level trough at initial time,the high-pressure zone would break ahead of time,leading to the early northward turn of Morakot.Conversely,when the intensity was weakened,the breaking of the high-pressure zone would be delayed.Especially,when the intensity was weakened to a certain extent,the high-pressure zone would not break.The typhoon,steered by the easterly flow to the south of the high-pressure zone,would keep moving westward,with no turn in the test.The diagnostic analysis of the physical fields based on the sensitivity test revealed that positive vorticity advection and cold advection associated with the upper-level trough weakened the intensity of the high-pressure zone.The upper-level trough affected typhoon's track indirectly by influencing the high-pressure zone.展开更多
The static balance and the geostrophic balance are the common balances in meteorology.All the synoptic systems and most of the mesoscale systems satisfy the above two balances.However,due to the strong convection and ...The static balance and the geostrophic balance are the common balances in meteorology.All the synoptic systems and most of the mesoscale systems satisfy the above two balances.However,due to the strong convection and non-geostrophic feature,many mesoscale systems usually present as static imbalance,and the quasi-geostrophic approximation is no longer attainable.This paper tried to find out a kind of balance that exists for mesoscale convective system.To do this,the concrete mathematics definitions for balance and imbalance equations were defined.Then,it is proposed that the new balance equation should include the divergence,vorticity,and vertical motion simultaneously,and the helicity equation was a good choice for the basis.Finally,the mesoscale balance and imbalance equations were constructed,as well as a new balance model that was based on the helicity,horizontal divergence,vertical vorticity,continuity,and thermal dynamic equations under same approximations.Moreover,the corresponding potential vorticity(PV)inversion technique was introduced.It was pointed out that by using the PV conservation and the potential temperature conservation,the flows of the mesoscale balance model can be deduced,and their comparison with the real fields would give the degree of the imbalance.展开更多
A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° lat...A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front band and the magnitude of the positive vorticity from the balanced wind is very close to that from real winds. The PV perturbation in the boundary layer is to a certain degree favorable for the formation and development of Meiyu front. In general, the lower boundary potential temperature perturbation is not beneficial to the formation and development, which is attributed to the relatively low surface temperature due to surface evaporation and solar short-wave radiation reduction shaded by clouds on the Meiyu front band, however, it has some diurnal variation. The effect of PV perturbation in the upper troposphere on the formation and development of the Meiuyu front is relatively weaker than others' and not beneficial to the formation and development of the Meiyu front, but it is enhanced in the period of Meiyu front's fast southward movement when the deep North China trough develops and moves southeastward. Rest PV perturbation unrelated to latent heat release in the middle-lower troposphere plays a certain role in the Meiyu front's fast southward movement. Lastly, it should be pointed out that the different PV perturbations maybe play a different role in different stages of the Meiyu front development.展开更多
基金National Key Fundamental Research Development Program Planning"973"(2009CB4215032013CB430103)+2 种基金Natural Science Foundation of China(41375058)Construction of Advantageous Disciplines for Higher Education in Jiangsu ProvincePriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The NCEP 1°×1°reanalysis of June-to-September dataset between 2002 to 2009 is used in this study to conduct statistical analysis of the relationship between the environmental potential vorticity(PV)on 150 hPa located at the south edge of South Asia High(SAH)and TCs making landfall.The results show that 23 of the TCs are affected by the PV on 150 hPa located at the south edge of SAH between 2002 to2009,and three TCs'center pressure decline after the high-value environmental PV moves to the center of the TCs.These three TCs are Senlaku(0216),Bilis(0604)and Linfa(0903).Through diagnostic analysis from the viewpoint of isolines,we determined the relationship between the intensification of these TCs and the PV anomaly at high levels;the isentropic surface is close to the high level’s PV anomaly under the influence of the 150-hPa PV anomaly,leading to the decline of isentropic surfaces on both sides of the PV anomaly.Then the warm core of the middle and high levels of the TC strengthens and PV increases at the middle level,and both of them are beneficial to the reinforcement of the cyclonic vorticity in the low level.As a result,the center pressure of the TC declines.According to Wu’s theory of Slantwise Vorticity Development(SVD),the incline of the isentropic surfaces leads to the development of vertical vorticity,contributing to the vertical motion and the release of the latent heat.Then the warm core of the TC strengthens and the TC strengthens,too.Otherwise,piecewise PV inversion also shows that the high-level PV influences the mid-level more than the low level.
基金National Public Benefit(Meteorology)Research Foundation of China(GYHY201106004)National Basic Research Program"973"of China(2009CB421502)National Nature Science Foundation of China (40730948,41005029)
文摘In this paper,by carrying out sensitivity tests of initial conditions and diagnostic analysis of physical fields,the impact factors and the physical mechanism of the unusual track of Morakot in the Taiwan Strait are discussed and examined based on the potential vorticity(PV)inversion.The diagnostic results of NCEP data showed that Morakot's track was mainly steered by the subtropical high.The breaking of a high-pressure zone was the main cause for the northward turn of Morakot.A sensitivity test of initial conditions showed that the existence of upper-level trough was the leading factor for the breaking of the high-pressure zone.When the intensity was strengthened of the upper-level trough at initial time,the high-pressure zone would break ahead of time,leading to the early northward turn of Morakot.Conversely,when the intensity was weakened,the breaking of the high-pressure zone would be delayed.Especially,when the intensity was weakened to a certain extent,the high-pressure zone would not break.The typhoon,steered by the easterly flow to the south of the high-pressure zone,would keep moving westward,with no turn in the test.The diagnostic analysis of the physical fields based on the sensitivity test revealed that positive vorticity advection and cold advection associated with the upper-level trough weakened the intensity of the high-pressure zone.The upper-level trough affected typhoon's track indirectly by influencing the high-pressure zone.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417201)National Natural Science Foundation of China(91437215,41475100,and 41375052)
文摘The static balance and the geostrophic balance are the common balances in meteorology.All the synoptic systems and most of the mesoscale systems satisfy the above two balances.However,due to the strong convection and non-geostrophic feature,many mesoscale systems usually present as static imbalance,and the quasi-geostrophic approximation is no longer attainable.This paper tried to find out a kind of balance that exists for mesoscale convective system.To do this,the concrete mathematics definitions for balance and imbalance equations were defined.Then,it is proposed that the new balance equation should include the divergence,vorticity,and vertical motion simultaneously,and the helicity equation was a good choice for the basis.Finally,the mesoscale balance and imbalance equations were constructed,as well as a new balance model that was based on the helicity,horizontal divergence,vertical vorticity,continuity,and thermal dynamic equations under same approximations.Moreover,the corresponding potential vorticity(PV)inversion technique was introduced.It was pointed out that by using the PV conservation and the potential temperature conservation,the flows of the mesoscale balance model can be deduced,and their comparison with the real fields would give the degree of the imbalance.
文摘A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front band and the magnitude of the positive vorticity from the balanced wind is very close to that from real winds. The PV perturbation in the boundary layer is to a certain degree favorable for the formation and development of Meiyu front. In general, the lower boundary potential temperature perturbation is not beneficial to the formation and development, which is attributed to the relatively low surface temperature due to surface evaporation and solar short-wave radiation reduction shaded by clouds on the Meiyu front band, however, it has some diurnal variation. The effect of PV perturbation in the upper troposphere on the formation and development of the Meiuyu front is relatively weaker than others' and not beneficial to the formation and development of the Meiyu front, but it is enhanced in the period of Meiyu front's fast southward movement when the deep North China trough develops and moves southeastward. Rest PV perturbation unrelated to latent heat release in the middle-lower troposphere plays a certain role in the Meiyu front's fast southward movement. Lastly, it should be pointed out that the different PV perturbations maybe play a different role in different stages of the Meiyu front development.