Rural electrification remains a great challenge for Sub-Saharan Africa (SSA) as access to electricity is a prerequisite to accelerate its development. The present paper reviews the measures adopted to promote access t...Rural electrification remains a great challenge for Sub-Saharan Africa (SSA) as access to electricity is a prerequisite to accelerate its development. The present paper reviews the measures adopted to promote access to electricity in rural and remote areas of SSA. The main barriers to rural electrification in these developing countries are presented before showing technologies used for the aforementioned purpose. Then, adopted methods for enhancing the use of renewable energy in SSA are shown. Moreover, the policy adopted by decision makers and project planners are also highlighted. In addition, the optimal solutions proposed by researchers are given such as the cost-effective off-grid system type that might be a viable alternative to diesel power generation.展开更多
A microgrid is associated with a low voltage distribution power network and inherits small modular generation systems and loads that have certain coordinated functions to provide the solution to supply premium power t...A microgrid is associated with a low voltage distribution power network and inherits small modular generation systems and loads that have certain coordinated functions to provide the solution to supply premium power to remote or specific areas. Similar to conventional power systems, the energy management of distributed generation resources (DERs) is carried out to minimize the operation cost and maximize benefit of installation of DERS in a microgrid. This paper presents the process of implementing the short-term DER scheduling function for a dc microgrid. The optimal scheduling results for two operation modes are then reported.展开更多
Microgrids are becoming more popular in areas where there is still no connectivity to the main grid largely due to their remote geographical location. This paper focuses on the feasibility analysis, using the HOMER Pr...Microgrids are becoming more popular in areas where there is still no connectivity to the main grid largely due to their remote geographical location. This paper focuses on the feasibility analysis, using the HOMER Pro simulation program, of an islanded micro-grid for the Navajo community in Tohatchi, New Mexico using different energy mixes of a Photovoltaics (PV) system, a Wind Energy system, a Battery Energy Storage System (BESS) and a Diesel Generator.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The Net Present Cost (NPC), </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">and</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> the Levelized Cost of Electricity (LCOE), were the two crucial economic factors considered. Through the analysis, the system with the PV, wind turbines, battery, and a diesel generator was found to have the lowest LCOE and NPC. There was a reduction of 75% in the costs of the combined system as compared to the diesel-only base case. Also, this combined system provided the minimum emission levels.</span><sup> </sup><span style="font-family:Verdana;">The analysis suggests that the integration of renewable energy using microgrids to help the access of energy for rural areas was possible. The analysis could very well be extended to any other communit</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">y</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> by considering the wind and solar resources present at that location.展开更多
While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent p...While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermittency of PV power generation and the peak load of the Microgrid. Simulation has been performed for all three cases and the simulation results show that the presented optimization algorithms can meet defined objectives.展开更多
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e...This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.展开更多
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ...In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.展开更多
文摘Rural electrification remains a great challenge for Sub-Saharan Africa (SSA) as access to electricity is a prerequisite to accelerate its development. The present paper reviews the measures adopted to promote access to electricity in rural and remote areas of SSA. The main barriers to rural electrification in these developing countries are presented before showing technologies used for the aforementioned purpose. Then, adopted methods for enhancing the use of renewable energy in SSA are shown. Moreover, the policy adopted by decision makers and project planners are also highlighted. In addition, the optimal solutions proposed by researchers are given such as the cost-effective off-grid system type that might be a viable alternative to diesel power generation.
文摘A microgrid is associated with a low voltage distribution power network and inherits small modular generation systems and loads that have certain coordinated functions to provide the solution to supply premium power to remote or specific areas. Similar to conventional power systems, the energy management of distributed generation resources (DERs) is carried out to minimize the operation cost and maximize benefit of installation of DERS in a microgrid. This paper presents the process of implementing the short-term DER scheduling function for a dc microgrid. The optimal scheduling results for two operation modes are then reported.
文摘Microgrids are becoming more popular in areas where there is still no connectivity to the main grid largely due to their remote geographical location. This paper focuses on the feasibility analysis, using the HOMER Pro simulation program, of an islanded micro-grid for the Navajo community in Tohatchi, New Mexico using different energy mixes of a Photovoltaics (PV) system, a Wind Energy system, a Battery Energy Storage System (BESS) and a Diesel Generator.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The Net Present Cost (NPC), </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">and</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> the Levelized Cost of Electricity (LCOE), were the two crucial economic factors considered. Through the analysis, the system with the PV, wind turbines, battery, and a diesel generator was found to have the lowest LCOE and NPC. There was a reduction of 75% in the costs of the combined system as compared to the diesel-only base case. Also, this combined system provided the minimum emission levels.</span><sup> </sup><span style="font-family:Verdana;">The analysis suggests that the integration of renewable energy using microgrids to help the access of energy for rural areas was possible. The analysis could very well be extended to any other communit</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">y</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> by considering the wind and solar resources present at that location.
文摘While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermittency of PV power generation and the peak load of the Microgrid. Simulation has been performed for all three cases and the simulation results show that the presented optimization algorithms can meet defined objectives.
文摘This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.
基金funded by the National Natural Science Foundation of China(52067013),and the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.