This paper focuses on the design of the inverter power stage connected with PV-grid which supports the contrived PV system. The increased number of grid connected photovoltaic (PV) inverters gave rise to problems conc...This paper focuses on the design of the inverter power stage connected with PV-grid which supports the contrived PV system. The increased number of grid connected photovoltaic (PV) inverters gave rise to problems concerning the stability and safety of the utility grid, as well as power quality issues. The proposed systems can overcome these issues and improve standard regulation methods for gird connected PV inverter. The maximum available voltage in the PV string is tracked by the power stage which has been planned and designed in such a way. The tracked voltage is boosted then. The important components to voltage source inverter (VSI) are boost inductor and input capacitor which are calculated. To get a clear sinusoidal output phase voltage of 230 V from a DC capacitance bus projected to deal with 400 V, the important inverter stage parameters have been planned and modeled in Mat lab. Each block stage of the converter is easily understandable by the Simlink of the dual stage DC-AC converter explanation. The control schemes which have been proposed would compromise with the inverter power stage which forms the neat grid system. The existing renewable energy sources in the laboratory are integrated by the proposed control.展开更多
This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter t...This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.展开更多
Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great dem...Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.展开更多
This paper proposes a new peak current control switching(PCCS)method for single-phase inverter in photovoltaic(PV)generation system.This method minimizes the difference between a peak current and the current command w...This paper proposes a new peak current control switching(PCCS)method for single-phase inverter in photovoltaic(PV)generation system.This method minimizes the difference between a peak current and the current command with a constant switching frequency.In this paper,the principle and the simulation results of the proposed method are described.In this paper,the principle and the simulated transient characteristics of this PCCS method are described.From the results,it is clarified that the proposed switching method is effective.展开更多
This paper presents the Synchronous Reference Frame Theory (SRF) based Phase Locked Loop (PLL) to enhance the performance of Dynamic Voltage Controller (DVR). In a grid connected power conversion system, a critical co...This paper presents the Synchronous Reference Frame Theory (SRF) based Phase Locked Loop (PLL) to enhance the performance of Dynamic Voltage Controller (DVR). In a grid connected power conversion system, a critical component is the Phase-Locked Loop (PLL) that generates the grid voltage’s frequency and phase angle for the grid synchronization. For grid voltage control, accurate and fast responding PLLs are required to provide phase angle and frequency measurements of the grid voltage. Therefore, SRF based PLL is presented in this work and it calculates the phase angle accurately and effectively. This paper also presents a novel feedback mechanism for SRF-PLL which uses the estimated frequency and phase to achieve grid control. The fundamental signal of the grid voltage is extracted by low pass filter and a unit value controller to generate a unity sine reference signal for the feedback network. In particular, the performance of the SRF-PLL in the three-phase PV fed grid connected system is analyzed under the different power quality issues such as voltage sag and swell. In addition, a detailed study on synchronous reference frame theory is presented. An appropriate control algorithm for DVR is developed and the validity of the proposed configuration is verified through MATLAB simulation results as well as experimental results under different operating conditions.展开更多
风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空...风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空间模型,然后提出综合考虑稳态运行约束条件和小信号稳定性约束条件的系统功率传输能力计算方法及流程,掌握不同功率水平下系统稳定运行区域及边界的变化特征,最终得到不同水电出力下的直流外送系统功率传输范围、特定传输功率下所允许的水电出力最小值、风光配比与小信号稳定性的定量关系。通过该方法定量评估风光水配比不同时直流外送系统的功率传输能力,从而优化选取风光水配比。结果表明,水电出力较小时,系统传输功率上限受小信号稳定性制约,下限受电压偏移约束制约;水电出力较大时,系统传输功率上限受LCC-HVDC安全运行约束制约,下限受逆变侧电压偏移、系统潮流约束制约;在功率运行点不变时,风光配比平衡工况系统更加稳定。最后,通过PSCAD/EMTDC下的电磁暂态仿真,验证上述功率传输能力理论计算的正确性。展开更多
文摘This paper focuses on the design of the inverter power stage connected with PV-grid which supports the contrived PV system. The increased number of grid connected photovoltaic (PV) inverters gave rise to problems concerning the stability and safety of the utility grid, as well as power quality issues. The proposed systems can overcome these issues and improve standard regulation methods for gird connected PV inverter. The maximum available voltage in the PV string is tracked by the power stage which has been planned and designed in such a way. The tracked voltage is boosted then. The important components to voltage source inverter (VSI) are boost inductor and input capacitor which are calculated. To get a clear sinusoidal output phase voltage of 230 V from a DC capacitance bus projected to deal with 400 V, the important inverter stage parameters have been planned and modeled in Mat lab. Each block stage of the converter is easily understandable by the Simlink of the dual stage DC-AC converter explanation. The control schemes which have been proposed would compromise with the inverter power stage which forms the neat grid system. The existing renewable energy sources in the laboratory are integrated by the proposed control.
文摘This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation.
文摘Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.
文摘This paper proposes a new peak current control switching(PCCS)method for single-phase inverter in photovoltaic(PV)generation system.This method minimizes the difference between a peak current and the current command with a constant switching frequency.In this paper,the principle and the simulation results of the proposed method are described.In this paper,the principle and the simulated transient characteristics of this PCCS method are described.From the results,it is clarified that the proposed switching method is effective.
文摘This paper presents the Synchronous Reference Frame Theory (SRF) based Phase Locked Loop (PLL) to enhance the performance of Dynamic Voltage Controller (DVR). In a grid connected power conversion system, a critical component is the Phase-Locked Loop (PLL) that generates the grid voltage’s frequency and phase angle for the grid synchronization. For grid voltage control, accurate and fast responding PLLs are required to provide phase angle and frequency measurements of the grid voltage. Therefore, SRF based PLL is presented in this work and it calculates the phase angle accurately and effectively. This paper also presents a novel feedback mechanism for SRF-PLL which uses the estimated frequency and phase to achieve grid control. The fundamental signal of the grid voltage is extracted by low pass filter and a unit value controller to generate a unity sine reference signal for the feedback network. In particular, the performance of the SRF-PLL in the three-phase PV fed grid connected system is analyzed under the different power quality issues such as voltage sag and swell. In addition, a detailed study on synchronous reference frame theory is presented. An appropriate control algorithm for DVR is developed and the validity of the proposed configuration is verified through MATLAB simulation results as well as experimental results under different operating conditions.
文摘风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空间模型,然后提出综合考虑稳态运行约束条件和小信号稳定性约束条件的系统功率传输能力计算方法及流程,掌握不同功率水平下系统稳定运行区域及边界的变化特征,最终得到不同水电出力下的直流外送系统功率传输范围、特定传输功率下所允许的水电出力最小值、风光配比与小信号稳定性的定量关系。通过该方法定量评估风光水配比不同时直流外送系统的功率传输能力,从而优化选取风光水配比。结果表明,水电出力较小时,系统传输功率上限受小信号稳定性制约,下限受电压偏移约束制约;水电出力较大时,系统传输功率上限受LCC-HVDC安全运行约束制约,下限受逆变侧电压偏移、系统潮流约束制约;在功率运行点不变时,风光配比平衡工况系统更加稳定。最后,通过PSCAD/EMTDC下的电磁暂态仿真,验证上述功率传输能力理论计算的正确性。