Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta...Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.展开更多
A groundbreaking method is introduced to leverage machine learn-ing algorithms to revolutionize the prediction of success rates for science fiction films.In the captivating world of the film industry,extensive researc...A groundbreaking method is introduced to leverage machine learn-ing algorithms to revolutionize the prediction of success rates for science fiction films.In the captivating world of the film industry,extensive research and accurate forecasting are vital to anticipating a movie’s triumph prior to its debut.Our study aims to harness the power of available data to estimate a film’s early success rate.With the vast resources offered by the internet,we can access a plethora of movie-related information,including actors,directors,critic reviews,user reviews,ratings,writers,budgets,genres,Facebook likes,YouTube views for movie trailers,and Twitter followers.The first few weeks of a film’s release are crucial in determining its fate,and online reviews and film evaluations profoundly impact its opening-week earnings.Hence,our research employs advanced supervised machine learning techniques to predict a film’s triumph.The Internet Movie Database(IMDb)is a comprehensive data repository for nearly all movies.A robust predictive classification approach is developed by employing various machine learning algorithms,such as fine,medium,coarse,cosine,cubic,and weighted KNN.To determine the best model,the performance of each feature was evaluated based on composite metrics.Moreover,the significant influences of social media platforms were recognized including Twitter,Instagram,and Facebook on shaping individuals’opinions.A hybrid success rating prediction model is obtained by integrating the proposed prediction models with sentiment analysis from available platforms.The findings of this study demonstrate that the chosen algorithms offer more precise estimations,faster execution times,and higher accuracy rates when compared to previous research.By integrating the features of existing prediction models and social media sentiment analysis models,our proposed approach provides a remarkably accurate prediction of a movie’s success.This breakthrough can help movie producers and marketers anticipate a film’s triumph before its release,allowing them to tailor their promotional activities accordingly.Furthermore,the adopted research lays the foundation for developing even more accurate prediction models,considering the ever-increasing significance of social media platforms in shaping individ-uals’opinions.In conclusion,this study showcases the immense potential of machine learning algorithms in predicting the success rate of science fiction films,opening new avenues for the film industry.展开更多
The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an au...The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects.展开更多
提出了一种基于模型预测电流控制(model predictive current control,MPCC)的具有有源滤波功能的光伏并网(photovoltaic power generation and active filter,PV-AF)系统控制策略。电流环采用模型预测控制(model predictive control,MPC...提出了一种基于模型预测电流控制(model predictive current control,MPCC)的具有有源滤波功能的光伏并网(photovoltaic power generation and active filter,PV-AF)系统控制策略。电流环采用模型预测控制(model predictive control,MPC)方法,在???坐标系下实现对光伏逆变电流指令和谐波补偿电流指令的无静差跟踪,使PV-AF系统将光伏阵列的能量注入交流电网的同时,有效补偿本地并联负载谐波电流。建立了MPC中的预测模型、优化函数等,分析了模型参数对系统稳定性和控制精度的影响。实验结果验证了所提策略的有效性。展开更多
We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic bi...We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic binary neural networks that are pre-trained to produce such mappings. The pre-training is implemented by a back propagating supervised learning algorithm which converges almost surely to the probabilities induced by the environment, under general ergodicity conditions.展开更多
基金the support of the Fundamental Research Funds for the Air Force Engineering University under Grant No.XZJK2019040。
文摘Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.
文摘A groundbreaking method is introduced to leverage machine learn-ing algorithms to revolutionize the prediction of success rates for science fiction films.In the captivating world of the film industry,extensive research and accurate forecasting are vital to anticipating a movie’s triumph prior to its debut.Our study aims to harness the power of available data to estimate a film’s early success rate.With the vast resources offered by the internet,we can access a plethora of movie-related information,including actors,directors,critic reviews,user reviews,ratings,writers,budgets,genres,Facebook likes,YouTube views for movie trailers,and Twitter followers.The first few weeks of a film’s release are crucial in determining its fate,and online reviews and film evaluations profoundly impact its opening-week earnings.Hence,our research employs advanced supervised machine learning techniques to predict a film’s triumph.The Internet Movie Database(IMDb)is a comprehensive data repository for nearly all movies.A robust predictive classification approach is developed by employing various machine learning algorithms,such as fine,medium,coarse,cosine,cubic,and weighted KNN.To determine the best model,the performance of each feature was evaluated based on composite metrics.Moreover,the significant influences of social media platforms were recognized including Twitter,Instagram,and Facebook on shaping individuals’opinions.A hybrid success rating prediction model is obtained by integrating the proposed prediction models with sentiment analysis from available platforms.The findings of this study demonstrate that the chosen algorithms offer more precise estimations,faster execution times,and higher accuracy rates when compared to previous research.By integrating the features of existing prediction models and social media sentiment analysis models,our proposed approach provides a remarkably accurate prediction of a movie’s success.This breakthrough can help movie producers and marketers anticipate a film’s triumph before its release,allowing them to tailor their promotional activities accordingly.Furthermore,the adopted research lays the foundation for developing even more accurate prediction models,considering the ever-increasing significance of social media platforms in shaping individ-uals’opinions.In conclusion,this study showcases the immense potential of machine learning algorithms in predicting the success rate of science fiction films,opening new avenues for the film industry.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978517,52090082,and 52108381)Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-07-456 E00051)Shanghai Science and Technology Committee Program(Grant Nos.21DZ1200601 and 20DZ1201404).
文摘The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects.
文摘提出了一种基于模型预测电流控制(model predictive current control,MPCC)的具有有源滤波功能的光伏并网(photovoltaic power generation and active filter,PV-AF)系统控制策略。电流环采用模型预测控制(model predictive control,MPC)方法,在???坐标系下实现对光伏逆变电流指令和谐波补偿电流指令的无静差跟踪,使PV-AF系统将光伏阵列的能量注入交流电网的同时,有效补偿本地并联负载谐波电流。建立了MPC中的预测模型、优化函数等,分析了模型参数对系统稳定性和控制精度的影响。实验结果验证了所提策略的有效性。
文摘We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic binary neural networks that are pre-trained to produce such mappings. The pre-training is implemented by a back propagating supervised learning algorithm which converges almost surely to the probabilities induced by the environment, under general ergodicity conditions.