The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar...The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar PV was conducted on October 13th,2018 in the Kyushu area,the curtailment has been frequently executed including wind power after that.In this study,cross-regional interconnector and pumped hydro energy storage(PHES)are focused on mitigating curtailment.In Japan,there are 9 electric power areas which connected each other by cross-regional interconnectors.According to the historical operation,cross-regional interconnectors were secured as emergency flexible measures,but after the implicit auction was started from October 2018,it is used on merit order.Regarding a PHES in Japan,they have been built with nuclear power plants for several decades.Because the output of nuclear power generation is constant,so the PHES is used to absorb the surplus at nighttime when the demand declines.All nuclear power plants in Japan have been shut down after the accident at the Fukushima Daiichi Nuclear Power Plant following the Great East Japan Earthquake that occurred on March 11th,2011.There are several nuclear power plants that have been restarted(9 reactors,as of August 2019).In this study,the amount of curtailment for solar PV in the Kyushu area is sent to the Chugoku area using the cross-regional interconnector(Kanmon line).Then,the PHES in the Chugoku area is pumping with low price.Because the spot price in the market is low when the curtailment is executed.After that,the PHES is generating at night with high price when the solar PV is not generating.It makes a profit by the deference for the cost of pumping and the revenue of generating by the PHES.As a calculation result,for one week from May 2nd to 8th,2019,a profit becomes 152.2 million JPY(about 1.22 million EUR).For this purpose,it is necessary to raise the operation capacity of the cross-regional interconnector up to the rated capacity with the frequency control function of solar PV instead of the capacity to keep frequency in the event of an accident.This will allow the further introduction of solar PV in Japan.展开更多
随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发...随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。展开更多
文摘针对传统太阳能光伏光热PV/T双源热泵存在的热力性能差、能量损耗大等问题,提出一种光伏直驱PV/T双源热泵制热水系统(太阳能+空气源),并对系统进行实验研究。结果表明,在室外平均环境温度27.9℃、平均太阳辐射强度691.1 W/m2的夏天户外实验工况下,系统运行约4 h,将250 L 26.5℃的水加热到目标温度55℃,热泵平均COP为8.83。实验期间,PV/T光伏组件的平均温度比同样工况下的纯参比光伏组件温度降低9.8℃,光电性能相对提高17.53%。
文摘The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar PV was conducted on October 13th,2018 in the Kyushu area,the curtailment has been frequently executed including wind power after that.In this study,cross-regional interconnector and pumped hydro energy storage(PHES)are focused on mitigating curtailment.In Japan,there are 9 electric power areas which connected each other by cross-regional interconnectors.According to the historical operation,cross-regional interconnectors were secured as emergency flexible measures,but after the implicit auction was started from October 2018,it is used on merit order.Regarding a PHES in Japan,they have been built with nuclear power plants for several decades.Because the output of nuclear power generation is constant,so the PHES is used to absorb the surplus at nighttime when the demand declines.All nuclear power plants in Japan have been shut down after the accident at the Fukushima Daiichi Nuclear Power Plant following the Great East Japan Earthquake that occurred on March 11th,2011.There are several nuclear power plants that have been restarted(9 reactors,as of August 2019).In this study,the amount of curtailment for solar PV in the Kyushu area is sent to the Chugoku area using the cross-regional interconnector(Kanmon line).Then,the PHES in the Chugoku area is pumping with low price.Because the spot price in the market is low when the curtailment is executed.After that,the PHES is generating at night with high price when the solar PV is not generating.It makes a profit by the deference for the cost of pumping and the revenue of generating by the PHES.As a calculation result,for one week from May 2nd to 8th,2019,a profit becomes 152.2 million JPY(about 1.22 million EUR).For this purpose,it is necessary to raise the operation capacity of the cross-regional interconnector up to the rated capacity with the frequency control function of solar PV instead of the capacity to keep frequency in the event of an accident.This will allow the further introduction of solar PV in Japan.
文摘随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。