The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric v...The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.展开更多
On March 31, in accordance with the typical design requirements of the State Grid, the f irst large electric vehicle (EV) charging station, built by the North China Grid,
This paper presents intelligent access control for a charging station and a framework for dynamically and adaptively managing charging requests from randomly arriving electric vehicles(EVs),to increase the revenue of ...This paper presents intelligent access control for a charging station and a framework for dynamically and adaptively managing charging requests from randomly arriving electric vehicles(EVs),to increase the revenue of the station.First,charging service requests from random EV arrivals are described as an event-driven sequential decision process,and the decision-making relies on an eventextended state that is composed of the real-time electricity price,real-time charging station state,and EV arrival event.Second,a state aggregation method is introduced to reduce the state space by first aggregating the charging station state in the form of the remaining charging time and then further aggregating it via sort coding.Besides,mathematical calculations of the code value are provided,and their uniqueness and continuous integer characteristics are proved.Then,a corresponding Q-learning method is proposed to derive an optimal or suboptimal access control policy.The results of a case study demonstrate that the proposed learning optimisation method based on the event-extended state aggregation performs better than flat Q-learning.The space complexity and time complexity are significantly reduced,which substantially improves the learning efficiency and optimisation performance.展开更多
This paper presents a planning and real-time pricing approach for EV charging stations(CSs).The approach takes the form of a bi-level model to fully consider the interest of both the government and EV charging station...This paper presents a planning and real-time pricing approach for EV charging stations(CSs).The approach takes the form of a bi-level model to fully consider the interest of both the government and EV charging station operators in the planning process.From the perspective of maximizing social welfare,the government acts as the decision-maker of the upper level that optimizes the charging price matrix,and uses it as a transfer variable to indirectly influence the decisions of the lower level operators.Then each operator at the lower level determines their scale according to the goal of maximizing their own revenue,and feeds the scale matrix back to the upper level.A Logit model is applied to predict the drivers’preference when selecting a CS.Furthermore,an improved particle swarm optimization(PSO)with the utilization of a penalty function is introduced to solve the nonlinear nonconvex bi-level model.The paper applies the proposed Bi-level planning model to a singlecenter small/medium-sized city with three scenarios to evaluate its performance,including the equipment utilization rate,payback period,traffic attraction ability,etc.The result verifies that the model performs very well in typical CS distribution scenarios with a reasonable station payback period(average 6.5 years),and relatively high equipment utilization rate,44.32%.展开更多
Smart parking lots are smart places capable of supporting both parking and charging services for electric vehicles(EVs).In order to manage EV charging,the parking lot local controller(PLLC)requires data exchange with ...Smart parking lots are smart places capable of supporting both parking and charging services for electric vehicles(EVs).In order to manage EV charging,the parking lot local controller(PLLC)requires data exchange with EV charging stations(EVCSs)through communication infrastructures.However,data losses and communication delays are unavoidable and may significantly degrade the system performance.This work aims to investigate the underlying communication networks for remote monitoring of EVCSs in a smart campus parking lot.The communication network consists of two subnetworks:parking area network(PAN)and campus area network(CAN).PAN covers communication among EVs,charging stations and PLLC,while CAN enables dedicated communication between PLLCs and a global controller of the university.As one of the major obstacles in EV system is the lack of unified communication architecture to integrate EVCS in the power grid,we develop communication models for the in-vehicle system and EVCSs based on logical node concept of IEC 61850 standard.Furthermore,we implement network models for EVCSs using OPNET modeler.Different communication technologies and configurations are considered in modeling and simulations,and end-toend delay is evaluated and discussed.展开更多
The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal plan...The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal planning,especially the siting and sizing of FCSs in the electrical distribution system.Inappropriate planning of fast EV charging stations(EVCSs)cause a negative impact on the distribution system.This paper presented a multiobjective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations(DGs)with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system.The problem is formulated as a mixed integer non-linear problem(MINLP)to optimize the loss of EV user,network power loss(NPL),FCS development cost and improve the voltage profile of the electrical distribution system.Non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)is used for solving the MINLP.The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.展开更多
基金the National Social Science Foundation of China(No.18AJL014)。
文摘The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.
文摘On March 31, in accordance with the typical design requirements of the State Grid, the f irst large electric vehicle (EV) charging station, built by the North China Grid,
文摘针对目前城市电动汽车(electric vehicle,EV)充电站存在盲目建设、规划不合理导致的部分充电站利用率低、用户充电满意度低等问题,同时为适应“双碳”目标下发展大规模EV的充电站规划需求,提出一种基于蒙特卡洛模拟和回声状态网络(echo state network,ESN)拟合的城市EV时空充电负荷预测方法,进一步开展EV充电站规划研究。首先考虑城市交通路网结构和区域主要功能,将待规划区域进行网格划分并作为待建充电站备选位置;利用蒙特卡洛方法对各类EV进行多种模式的出行链模拟,获取各网格区域内的EV充电负荷数据集;为拟合各网格内EV充电负荷的多样化分布特征,建立基于回声状态网络ESN学习算法的EV时空充电负荷预测模型,实现一定EV保有量下待规划区内EV时空充电负荷的预测。进一步考虑待规划网格区域内的最大充电预测负荷等约束条件﹑以充电站的建设和运维成本、EV用户充电出行成本以及配网损耗的综合成本最小为目标,建立EV充电站的规划模型,利用粒子群算法进行模型求解得到待规划区的充电站建设位置、数量及容量;最后以某城区EV充电负荷预测及充电站规划为例进行计算,验证了所提方法及模型的有效性。
基金the National Natural Science Foundation of China under Grant Nos.61871412,61972439。
文摘This paper presents intelligent access control for a charging station and a framework for dynamically and adaptively managing charging requests from randomly arriving electric vehicles(EVs),to increase the revenue of the station.First,charging service requests from random EV arrivals are described as an event-driven sequential decision process,and the decision-making relies on an eventextended state that is composed of the real-time electricity price,real-time charging station state,and EV arrival event.Second,a state aggregation method is introduced to reduce the state space by first aggregating the charging station state in the form of the remaining charging time and then further aggregating it via sort coding.Besides,mathematical calculations of the code value are provided,and their uniqueness and continuous integer characteristics are proved.Then,a corresponding Q-learning method is proposed to derive an optimal or suboptimal access control policy.The results of a case study demonstrate that the proposed learning optimisation method based on the event-extended state aggregation performs better than flat Q-learning.The space complexity and time complexity are significantly reduced,which substantially improves the learning efficiency and optimisation performance.
基金supported by the National Natural Science Foundation of China under Grant 51807024。
文摘This paper presents a planning and real-time pricing approach for EV charging stations(CSs).The approach takes the form of a bi-level model to fully consider the interest of both the government and EV charging station operators in the planning process.From the perspective of maximizing social welfare,the government acts as the decision-maker of the upper level that optimizes the charging price matrix,and uses it as a transfer variable to indirectly influence the decisions of the lower level operators.Then each operator at the lower level determines their scale according to the goal of maximizing their own revenue,and feeds the scale matrix back to the upper level.A Logit model is applied to predict the drivers’preference when selecting a CS.Furthermore,an improved particle swarm optimization(PSO)with the utilization of a penalty function is introduced to solve the nonlinear nonconvex bi-level model.The paper applies the proposed Bi-level planning model to a singlecenter small/medium-sized city with three scenarios to evaluate its performance,including the equipment utilization rate,payback period,traffic attraction ability,etc.The result verifies that the model performs very well in typical CS distribution scenarios with a reasonable station payback period(average 6.5 years),and relatively high equipment utilization rate,44.32%.
基金supported by the National Research Foundation of Korea(NRF)grant funded by Korea government(MIST)(No.2017R1A2B4004868).
文摘Smart parking lots are smart places capable of supporting both parking and charging services for electric vehicles(EVs).In order to manage EV charging,the parking lot local controller(PLLC)requires data exchange with EV charging stations(EVCSs)through communication infrastructures.However,data losses and communication delays are unavoidable and may significantly degrade the system performance.This work aims to investigate the underlying communication networks for remote monitoring of EVCSs in a smart campus parking lot.The communication network consists of two subnetworks:parking area network(PAN)and campus area network(CAN).PAN covers communication among EVs,charging stations and PLLC,while CAN enables dedicated communication between PLLCs and a global controller of the university.As one of the major obstacles in EV system is the lack of unified communication architecture to integrate EVCS in the power grid,we develop communication models for the in-vehicle system and EVCSs based on logical node concept of IEC 61850 standard.Furthermore,we implement network models for EVCSs using OPNET modeler.Different communication technologies and configurations are considered in modeling and simulations,and end-toend delay is evaluated and discussed.
文摘The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal planning,especially the siting and sizing of FCSs in the electrical distribution system.Inappropriate planning of fast EV charging stations(EVCSs)cause a negative impact on the distribution system.This paper presented a multiobjective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations(DGs)with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system.The problem is formulated as a mixed integer non-linear problem(MINLP)to optimize the loss of EV user,network power loss(NPL),FCS development cost and improve the voltage profile of the electrical distribution system.Non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)is used for solving the MINLP.The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.