Nowadays hydrogels have been attracting the massive interest in oil-water separation due to their robust hydrophilicity and fantastic underwater oiliness features.However,the weak toughness and tensile strength shortc...Nowadays hydrogels have been attracting the massive interest in oil-water separation due to their robust hydrophilicity and fantastic underwater oiliness features.However,the weak toughness and tensile strength shortcomings of hydrogels have thus inhibited their actual applicability.For this reason,we successfully fabricated the electrospun nanofiber membrane-reinforced PVA composite hydrogels.The PVA-PAN composite hydrogel has exhibited the excellent tensile strength and friction performance,separately enhancing 174.2%of the tensile strength,and reducing 20.7%of the friction coefficient and 58.7%of wear volume relative to the neat PVA hydrogel.Furthermore,the pull-out experiments indicated that the PAN nanofiber membrane exerted a stronger interface bonding effect with PVA hydrogel.The oil-water separation evaluation test showed that the separation efficiency reached up to 97.6%for treating the SA-100 lubricating oil/water system.展开更多
Starch-g-PVA / hydroxyapatite complex hydrogel was prepared with two- repeated freezing/thawing circles. SEM observation results exhibits that hydroxyapatite is dispersed in starch-g-PVA in nanoscale. Thermogravimetri...Starch-g-PVA / hydroxyapatite complex hydrogel was prepared with two- repeated freezing/thawing circles. SEM observation results exhibits that hydroxyapatite is dispersed in starch-g-PVA in nanoscale. Thermogravimetric analysis curves show that the remained fraction keeps the same at the temperatures higher than 490℃. It was found the dried starch-g-PVA/hydroxyapatite films could resuell within 12 minutes.展开更多
A Fricke-PVA-xylenol orange (FPX) hydrogel dosimeter, in good transparency, was prepared by physical crosslinking for three-dimensional dose measurements. The process of mixing the chemical dosimeter with the PVA solu...A Fricke-PVA-xylenol orange (FPX) hydrogel dosimeter, in good transparency, was prepared by physical crosslinking for three-dimensional dose measurements. The process of mixing the chemical dosimeter with the PVA solution was carried out at room temperature, which reduced the influence of auto-oxidation rate. Gradation in color was obviously observed with different distance from the radiation source after 6 MeV electron beam irradiation for radiotherapy. The effects of irradiation dose and three components of the FPX gel dosimeter, i.e. ferrous ions, xylenol orange (XO) and sulphuric acid on sensitivity and stability of dose response were investigated by UV-vis spectropho-tometric measurement. The dose response of the FPX gel dosimeter was linear in the range 0~2.0 Gy. The orthogonal test was employed to find the optimal composition of the gel dosimeter with a sensitivity of about 0.095 cm-1·Gy-1. It was found that XO concentration greatly affected the sensitivity of dose response and lower concentrations of the ferrous ion and XO gave higher sensitivity within the range 0~2.0 Gy.展开更多
基金funded by the Jiangsu Yangzhou University Graduate Practice Innovation Program (XSJCX19-064)the Jiangsu Provincial Colleges and Universities First-Class Project Program (PPZY2015B112)
文摘Nowadays hydrogels have been attracting the massive interest in oil-water separation due to their robust hydrophilicity and fantastic underwater oiliness features.However,the weak toughness and tensile strength shortcomings of hydrogels have thus inhibited their actual applicability.For this reason,we successfully fabricated the electrospun nanofiber membrane-reinforced PVA composite hydrogels.The PVA-PAN composite hydrogel has exhibited the excellent tensile strength and friction performance,separately enhancing 174.2%of the tensile strength,and reducing 20.7%of the friction coefficient and 58.7%of wear volume relative to the neat PVA hydrogel.Furthermore,the pull-out experiments indicated that the PAN nanofiber membrane exerted a stronger interface bonding effect with PVA hydrogel.The oil-water separation evaluation test showed that the separation efficiency reached up to 97.6%for treating the SA-100 lubricating oil/water system.
文摘Starch-g-PVA / hydroxyapatite complex hydrogel was prepared with two- repeated freezing/thawing circles. SEM observation results exhibits that hydroxyapatite is dispersed in starch-g-PVA in nanoscale. Thermogravimetric analysis curves show that the remained fraction keeps the same at the temperatures higher than 490℃. It was found the dried starch-g-PVA/hydroxyapatite films could resuell within 12 minutes.
基金Supported by Municipal Commission of Science and Technology of Shanghai (08JC1410200)Shanghai Leading Academic Discipline Project (S30109)
文摘A Fricke-PVA-xylenol orange (FPX) hydrogel dosimeter, in good transparency, was prepared by physical crosslinking for three-dimensional dose measurements. The process of mixing the chemical dosimeter with the PVA solution was carried out at room temperature, which reduced the influence of auto-oxidation rate. Gradation in color was obviously observed with different distance from the radiation source after 6 MeV electron beam irradiation for radiotherapy. The effects of irradiation dose and three components of the FPX gel dosimeter, i.e. ferrous ions, xylenol orange (XO) and sulphuric acid on sensitivity and stability of dose response were investigated by UV-vis spectropho-tometric measurement. The dose response of the FPX gel dosimeter was linear in the range 0~2.0 Gy. The orthogonal test was employed to find the optimal composition of the gel dosimeter with a sensitivity of about 0.095 cm-1·Gy-1. It was found that XO concentration greatly affected the sensitivity of dose response and lower concentrations of the ferrous ion and XO gave higher sensitivity within the range 0~2.0 Gy.