期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Biomimetic Hydrophobic Surfaces with Low or High Adhesion Based on Poly(vinyl alcohol) and SiO2 Nanoparticles 被引量:4
1
作者 Qian Wang Zhao Dong +3 位作者 Xiaoxia Yan Yanjiao Chang Lili Ren Jiang Zhou 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第3期476-485,共10页
Superhydrophobic surfaces are often found in nature, such as plant leaves and insect wings. Inspired by superhydrophobic phenomenon of the rose petals and the lotus leaves, biomimetic hydrophnbic surfaces with high or... Superhydrophobic surfaces are often found in nature, such as plant leaves and insect wings. Inspired by superhydrophobic phenomenon of the rose petals and the lotus leaves, biomimetic hydrophnbic surfaces with high or low adhesion were prepared with a facile drop-coating approach in this paper. Poly(vinyl alcohol) (PVA) was used as adhesive and SiO2 nanoparticles were used to fabricate surface micro-structure. Stearic acid or dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) were used as low surface energy materials to modify the prepared PVA/SiO2 coating surfaces. The effects of size of SiO2 nanoparticles, concentration of SiO2 nanoparticle suspensions and the modifications on the wettability of the surface were investigated. The morphology of the PVA/SiO2 coating surfaces was observed by using scanning electron microscope. Water contact angle of the obtained superhydrophilic surface could reach to 3°. Stearic acid modified PVA/SiO2 coating surfaces showed hydrophobicity with high adhesion. By mixing the SiO2 nanoparticles with sizes of 40 nm and 200 nm and modifying with DFTMS, water contact angle of the obtained coating surface could be up to 155° and slide angle was only 5°. This work provides a facile and useful method to control surface wettability through changing the roughness and chemical composition of a surface. 展开更多
关键词 biomimetic surface pva/SiO2 coating HYDROPHOBICITY high adhesion low adhesion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部