To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried o...To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.展开更多
The influence of nanolignin coupling bio-agent on some characteristics of polypropylene-wood flour composites was studied.Thus,nanolignin was prepared by the acidic method,and then different ratios of it(0,1,3 and 5 w...The influence of nanolignin coupling bio-agent on some characteristics of polypropylene-wood flour composites was studied.Thus,nanolignin was prepared by the acidic method,and then different ratios of it(0,1,3 and 5 wt%)were added to a polypropylene-wood flour mixture.After mechanically mixing wood flour,nanolignin,and polypropylene,the mixture was injection molded.ASTM methods were used to measure the structural properties of nanolignin,and prepared composites’water absorption,thickness swelling,bending modulus,and bending,tensile and impact strengths.Transforming the original lignin to nanolignin did not change the chemical bonds of the material.The addition of nanolignin yielded improved mechanical and physical properties of the composites prepared.Higher strength and dimensional stability are presented by nanolignin-containing composites when comparing them with those prepared with normal lignin.Nanolignin was shown by SEM(Scanning Electron Microscope)observation to be uniformly dispersed within the polymer matrix.Wood polymer composites(WPCs)with nanolignin exhibited comparable properties with the control samples prepared using maleic anhydride polypropylene(MAPP).展开更多
As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigate...As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigated the proposition of whether EVA is a suitable coupling agent for WPC or not. The results show that EVA with 8% VA is not a suitable coupling agent, because it reduces the mechanical properties of WPC without any significant effect on its physical properties. With an increase in the amount of wood powder, the mechanical properties of WPC decrease and the ability of water absorption of WPC increases.展开更多
The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, w...The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, was investigated. Wood sawdust and polypropylene powder were subjected to heat treatment to 290℃ during 8 min (the conditions were similar to those employed on an industrial scale). The emitted compounds were collected and analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the unpleasant smell was emitted from the pyrogenation of wood sawdust rather than from the polypropylene powder. Nine types of compounds (hydrocarbons, ethers, phenols, aldehydes, ketones, alcohols, acids and their derivatives, furan and its derivatives, and nitrogen-containing compounds) were collected in the gas phase during heating. Among those 126 components detected by GC-MS, 112 compounds were identified.展开更多
The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear p...The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear properties under dry and water lubrication sliding against quenched AISI-1045 steel were evaluated on an MM-200 tester. The fractograph of impact specimens, worn surfaces of the composites and their transfer films on the counterpart steel surfaces were observed with a scanning electron microscope and an optical microscope. Experimental results show that the composites containing 50% 74147μm fly ash have the highest hardness, highest impact strength and smallest wear rate. The wear rate of the composite is reduced by over two orders of magnitude. However, the composite containing over 50% fly ash has decreased wear-resistance, which is attributed to the weakened interaction between the filler and the polymer matrix in the presence of inadequate polymer matrix. The improved wear-resistance of the composite under dry sliding against the steel is attributed to the formation of the composite transfer film thereon.展开更多
High aspect ratio Phlogopite mica was used to enhance the dimensional stability and mechanical properties of extruded rigid Polyvinyl Chloride (PVC) foam. Mica was added to rigid PVC compound at different concentratio...High aspect ratio Phlogopite mica was used to enhance the dimensional stability and mechanical properties of extruded rigid Polyvinyl Chloride (PVC) foam. Mica was added to rigid PVC compound at different concentrations (0 - 20 wt%) and processed using a single screw profile extruder. PVC foam-Mica composites were characterized for their dimensional stability, and structural, thermal, and mechanical properties. Experimental results showed that the dimensional stability increased by 44% and heat resistance of the samples improved as the amount of mica increased in the composites. The storage modulus and tensile strength of the composites were also enhanced with the addition of mica. However, increasing the concentration of mica had no significant effect on the impact and flexural properties of the composites. SEM micrographs show good dispersion and orientation of the mica flakes along the cell walls of the PVC foam. Overall, the platy structure and physical properties of mica seemed to have played an important role in providing good interfacial bonding with the cell membranes of the foam, thus enhancing the dimensional stability of the PVC- Mica foam composites.展开更多
A new three-phase PZT C/PVC composite comprising PZT(50 vol%),nanocrystalline PVC (50 vol%) and a small volume fraction f of black(C0was prepared by the hot-pressing technique.The dielectric property of the comp...A new three-phase PZT C/PVC composite comprising PZT(50 vol%),nanocrystalline PVC (50 vol%) and a small volume fraction f of black(C0was prepared by the hot-pressing technique.The dielectric property of the composite as α function of the frequency and the dielectric and piezoelectric properties as α function of the volume fraction f of C were studied.The measured dielectric property demonstrates that α percolation transition occurs in the three-phase composites as in normal two-phase metal-insulator continuum media.The dielectric constant varies slightly with f at f〈0.1 and increases rapidly when f is close to the percolation threshold at 1kHz.The optimum properties were obtained for f=0.5 before the percolation threshold in the PZT/C/PVC(50/f/(50-f)vol%)composite with its d33(20pC/N) being 50% higher than that of the PZT/PVC(50/50vol%),and its g33(47.23×10^-3Vm/N)and Kp(0.25) much higher than the earlier reported values,XRD patterns and P-E hysteresis loops were used to interpret the experimental results.展开更多
Polyvinyl chloride (PVC) of different grades is the second most commonly used polymer for fabrication of electric cables and wires after polyethylene. Cables of domestic and industrial use of various capacities are fa...Polyvinyl chloride (PVC) of different grades is the second most commonly used polymer for fabrication of electric cables and wires after polyethylene. Cables of domestic and industrial use of various capacities are fabricated using different compounds of PVC. Mica is useful particulate filler extensively used to enhance the performance of many polymeric materials. It surface resistance and arc resistance improving its mechanical properties. In the present research work mica filled PVC composites of different concentrations were prepared using untreated and surface treated water ground mica of different particle size. Mica filled PVC composites were compounded for various compositions and test samples were prepared using compression moulding process. These samples were tested for electrical insulation and mechanical properties. The results shows enhancement in dielectric properties with improvement in Young’s modulus, stiffness, reduction in elongation at break and slight increase in shore D hardness of composites. Scanning electron microscopy was used to test the morphology of the samples which has shown proper distributions and adhesion of the filler mica in PVC matrix. There was some effect of surface treatment of mica on its mechanical and dielectric properties of the composite.展开更多
The inclusion of CaCO3 and kaolin in polyvinyl chloride (PVC) polymer matrices greatly enhances the physical and mechanical properties of the composite. In this study, the effects of kaolin and surface treatment of Ca...The inclusion of CaCO3 and kaolin in polyvinyl chloride (PVC) polymer matrices greatly enhances the physical and mechanical properties of the composite. In this study, the effects of kaolin and surface treatment of CaCO3 and kaolin particles on the microstructure and mechanical properties of PVC composites filled with kaolin particles via melt blending method were studied by means of SEM, tensile, Charpy impact testing, and FTIR. Treated and untreated kao-lin particles were dispersed in matrices of PVC resin at different concentrations up to 30 wt percentage. The tensile strength, elastic modulus, strain to failure and morphology of the resulting composites were measured for various filler loadings. Uniform dispersion of the fillers into the matrix proved to be a critical factor. SEM images revealed that small sized particles were more agglomerated than micron-sized particles and the amount of agglomerates increased with increasing particle content. Silane treated Kaolin-CaCO3/PVC composites had superior tensile and impact strengths to untreated kaolin-CaCO3/PVC composites. The Young’s modulus of all composites increased with increasing particle content up to maximum at 10% filler loading followed by gradually decreasing as content increased.展开更多
The present work describes the viability of a mortar binder based on two industrial by-products: poly(vinyl chloride) (PVC) particles from scrap and anhydrite (CaSO4) from fluorgypsum. Mortar composites were made inco...The present work describes the viability of a mortar binder based on two industrial by-products: poly(vinyl chloride) (PVC) particles from scrap and anhydrite (CaSO4) from fluorgypsum. Mortar composites were made incorporating different amounts of PVC particles and cured at constant room temperature during various periods of time. From X-ray diffraction, it was possible to follow the hydration process and to estimate the effect of the PVC particles on anhydrite transformation to gypsum (CaSO4·2H2O). Compressive strength from uniaxial testing was measured from stress-strain curves carried out at room temperature. According to these results, the hydration rates of the composites depend on the concentration of PVC particles and there is an enhancement in their compressive strength as particle content increases, reaching values of 36 MPa after 28 days.展开更多
Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mec...Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.展开更多
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ...Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material.展开更多
Via several techniques to modify sensitive matrix for inhabiting the leakage of fluorescent indicator, a new stable sensing material for monitoring phosphates has been prepared and applied to the measurement of phosph...Via several techniques to modify sensitive matrix for inhabiting the leakage of fluorescent indicator, a new stable sensing material for monitoring phosphates has been prepared and applied to the measurement of phosphates in artificial seawater. It is based on the reaction of PO 3- 4 with Al(Ⅲ) Morin that leads to the fluorescence quenching of the composite matrix. At pH value 4 0 and the salinity value 25 0, the response time of output signal having reached the steady state is less than 300 seconds. Its calibration graph is gained in the range of H 2PO - 4 mass concentration from 1 50 to 7 00 μg/mL with the limit of detection(3 σ/K ) 0 02 μg/mL. When it was used to measure phosphates in artificial seawater, the recovery ranged from 96 78% to 102 09%. Being stored under the proper condition, the membranes maintain sensitive for 90-120 days, and are able to be used for 50-80 times with indicator supplement.展开更多
基金This study was supported by the financial support of Natural Science Research Projects in Higher Education Institutions in Jiangsu Province(No.18KJD430002).
文摘To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.
文摘The influence of nanolignin coupling bio-agent on some characteristics of polypropylene-wood flour composites was studied.Thus,nanolignin was prepared by the acidic method,and then different ratios of it(0,1,3 and 5 wt%)were added to a polypropylene-wood flour mixture.After mechanically mixing wood flour,nanolignin,and polypropylene,the mixture was injection molded.ASTM methods were used to measure the structural properties of nanolignin,and prepared composites’water absorption,thickness swelling,bending modulus,and bending,tensile and impact strengths.Transforming the original lignin to nanolignin did not change the chemical bonds of the material.The addition of nanolignin yielded improved mechanical and physical properties of the composites prepared.Higher strength and dimensional stability are presented by nanolignin-containing composites when comparing them with those prepared with normal lignin.Nanolignin was shown by SEM(Scanning Electron Microscope)observation to be uniformly dispersed within the polymer matrix.Wood polymer composites(WPCs)with nanolignin exhibited comparable properties with the control samples prepared using maleic anhydride polypropylene(MAPP).
文摘As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigated the proposition of whether EVA is a suitable coupling agent for WPC or not. The results show that EVA with 8% VA is not a suitable coupling agent, because it reduces the mechanical properties of WPC without any significant effect on its physical properties. With an increase in the amount of wood powder, the mechanical properties of WPC decrease and the ability of water absorption of WPC increases.
文摘The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, was investigated. Wood sawdust and polypropylene powder were subjected to heat treatment to 290℃ during 8 min (the conditions were similar to those employed on an industrial scale). The emitted compounds were collected and analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the unpleasant smell was emitted from the pyrogenation of wood sawdust rather than from the polypropylene powder. Nine types of compounds (hydrocarbons, ethers, phenols, aldehydes, ketones, alcohols, acids and their derivatives, furan and its derivatives, and nitrogen-containing compounds) were collected in the gas phase during heating. Among those 126 components detected by GC-MS, 112 compounds were identified.
文摘The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear properties under dry and water lubrication sliding against quenched AISI-1045 steel were evaluated on an MM-200 tester. The fractograph of impact specimens, worn surfaces of the composites and their transfer films on the counterpart steel surfaces were observed with a scanning electron microscope and an optical microscope. Experimental results show that the composites containing 50% 74147μm fly ash have the highest hardness, highest impact strength and smallest wear rate. The wear rate of the composite is reduced by over two orders of magnitude. However, the composite containing over 50% fly ash has decreased wear-resistance, which is attributed to the weakened interaction between the filler and the polymer matrix in the presence of inadequate polymer matrix. The improved wear-resistance of the composite under dry sliding against the steel is attributed to the formation of the composite transfer film thereon.
文摘High aspect ratio Phlogopite mica was used to enhance the dimensional stability and mechanical properties of extruded rigid Polyvinyl Chloride (PVC) foam. Mica was added to rigid PVC compound at different concentrations (0 - 20 wt%) and processed using a single screw profile extruder. PVC foam-Mica composites were characterized for their dimensional stability, and structural, thermal, and mechanical properties. Experimental results showed that the dimensional stability increased by 44% and heat resistance of the samples improved as the amount of mica increased in the composites. The storage modulus and tensile strength of the composites were also enhanced with the addition of mica. However, increasing the concentration of mica had no significant effect on the impact and flexural properties of the composites. SEM micrographs show good dispersion and orientation of the mica flakes along the cell walls of the PVC foam. Overall, the platy structure and physical properties of mica seemed to have played an important role in providing good interfacial bonding with the cell membranes of the foam, thus enhancing the dimensional stability of the PVC- Mica foam composites.
文摘A new three-phase PZT C/PVC composite comprising PZT(50 vol%),nanocrystalline PVC (50 vol%) and a small volume fraction f of black(C0was prepared by the hot-pressing technique.The dielectric property of the composite as α function of the frequency and the dielectric and piezoelectric properties as α function of the volume fraction f of C were studied.The measured dielectric property demonstrates that α percolation transition occurs in the three-phase composites as in normal two-phase metal-insulator continuum media.The dielectric constant varies slightly with f at f〈0.1 and increases rapidly when f is close to the percolation threshold at 1kHz.The optimum properties were obtained for f=0.5 before the percolation threshold in the PZT/C/PVC(50/f/(50-f)vol%)composite with its d33(20pC/N) being 50% higher than that of the PZT/PVC(50/50vol%),and its g33(47.23×10^-3Vm/N)and Kp(0.25) much higher than the earlier reported values,XRD patterns and P-E hysteresis loops were used to interpret the experimental results.
文摘Polyvinyl chloride (PVC) of different grades is the second most commonly used polymer for fabrication of electric cables and wires after polyethylene. Cables of domestic and industrial use of various capacities are fabricated using different compounds of PVC. Mica is useful particulate filler extensively used to enhance the performance of many polymeric materials. It surface resistance and arc resistance improving its mechanical properties. In the present research work mica filled PVC composites of different concentrations were prepared using untreated and surface treated water ground mica of different particle size. Mica filled PVC composites were compounded for various compositions and test samples were prepared using compression moulding process. These samples were tested for electrical insulation and mechanical properties. The results shows enhancement in dielectric properties with improvement in Young’s modulus, stiffness, reduction in elongation at break and slight increase in shore D hardness of composites. Scanning electron microscopy was used to test the morphology of the samples which has shown proper distributions and adhesion of the filler mica in PVC matrix. There was some effect of surface treatment of mica on its mechanical and dielectric properties of the composite.
文摘The inclusion of CaCO3 and kaolin in polyvinyl chloride (PVC) polymer matrices greatly enhances the physical and mechanical properties of the composite. In this study, the effects of kaolin and surface treatment of CaCO3 and kaolin particles on the microstructure and mechanical properties of PVC composites filled with kaolin particles via melt blending method were studied by means of SEM, tensile, Charpy impact testing, and FTIR. Treated and untreated kao-lin particles were dispersed in matrices of PVC resin at different concentrations up to 30 wt percentage. The tensile strength, elastic modulus, strain to failure and morphology of the resulting composites were measured for various filler loadings. Uniform dispersion of the fillers into the matrix proved to be a critical factor. SEM images revealed that small sized particles were more agglomerated than micron-sized particles and the amount of agglomerates increased with increasing particle content. Silane treated Kaolin-CaCO3/PVC composites had superior tensile and impact strengths to untreated kaolin-CaCO3/PVC composites. The Young’s modulus of all composites increased with increasing particle content up to maximum at 10% filler loading followed by gradually decreasing as content increased.
文摘The present work describes the viability of a mortar binder based on two industrial by-products: poly(vinyl chloride) (PVC) particles from scrap and anhydrite (CaSO4) from fluorgypsum. Mortar composites were made incorporating different amounts of PVC particles and cured at constant room temperature during various periods of time. From X-ray diffraction, it was possible to follow the hydration process and to estimate the effect of the PVC particles on anhydrite transformation to gypsum (CaSO4·2H2O). Compressive strength from uniaxial testing was measured from stress-strain curves carried out at room temperature. According to these results, the hydration rates of the composites depend on the concentration of PVC particles and there is an enhancement in their compressive strength as particle content increases, reaching values of 36 MPa after 28 days.
基金supported by the National Natural Science Foundation of China (30671644, 30771680)
文摘Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.
基金supported by the Natural Science Foundation of China(Grant No.31600459)the Natural Science Foundation of Heilongjiang Province of China(Grant No.C2016001)
文摘Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material.
基金Supported by the Foundation for U niversity Key Teacher by the MOE,Natural Science Foundation of Fujian Provinceof China(No.D9910 0 0 9) and Three Projects of Science and Technology of Fujian Province(No.K990 37) .
文摘Via several techniques to modify sensitive matrix for inhabiting the leakage of fluorescent indicator, a new stable sensing material for monitoring phosphates has been prepared and applied to the measurement of phosphates in artificial seawater. It is based on the reaction of PO 3- 4 with Al(Ⅲ) Morin that leads to the fluorescence quenching of the composite matrix. At pH value 4 0 and the salinity value 25 0, the response time of output signal having reached the steady state is less than 300 seconds. Its calibration graph is gained in the range of H 2PO - 4 mass concentration from 1 50 to 7 00 μg/mL with the limit of detection(3 σ/K ) 0 02 μg/mL. When it was used to measure phosphates in artificial seawater, the recovery ranged from 96 78% to 102 09%. Being stored under the proper condition, the membranes maintain sensitive for 90-120 days, and are able to be used for 50-80 times with indicator supplement.