期刊文献+
共找到10,675篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and Thermal Stability of AlMoON Based Solar Selective Absorption Coating
1
作者 闵捷 YUAN Wenxu +5 位作者 CHEN Yufei LAN Yapeng YAN Mengdi LIU Hanze CHENG Xudong 代路 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期854-862,共9页
AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON an... AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability. 展开更多
关键词 AlMoON COATING PREPARATION thermal stability
下载PDF
Significantly enhanced thermal stability of HMX by phase-transition lysozyme coating
2
作者 Jiahui Liu Congmei Lin +3 位作者 Jianhu Zhang Chengcheng Zeng Zhijian Yang Fude Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期60-68,共9页
A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio... A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating. 展开更多
关键词 HMX LYSOZYME Phase transition thermal stability Sensitivity
下载PDF
Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
3
作者 Dong-Sheng Chen Ting-Ting Miao +3 位作者 Cheng Chang Xu-Yang Guo Meng-Yan Guan and Zhong-Li Ji 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期494-504,共11页
The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsid... The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments. 展开更多
关键词 methane hydrate molecular dynamics thermal transport triaxial compression structural stability
下载PDF
Thermal Stability and Degeneration Behavior of Solar Selective Absorber Based on WTi-Al_(2)O_(3)Cermet
4
作者 WANG Xiaobo FANG Wei +2 位作者 MA Yuchao CHENG Xudong LI Kewei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1555-1564,共10页
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th... A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers. 展开更多
关键词 solar selective absorber thermal stability spectral selectivity optical properties
下载PDF
Construction of core@double-shell structured energetic composites with simultaneously enhanced thermal stability and safety performance
5
作者 Peng Wang Wen Qian +6 位作者 Ruolei Zhong Fangfang He Xin Li Jie Chen Li Meng Yinshuang Sun Guansong He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期134-142,共9页
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat... The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials. 展开更多
关键词 CL-20 Double-shell structure thermal stability Safety performance Tannic acid Graphene sheets
下载PDF
Research progress on classification,source,application of phytosterol esters,and their thermal oxidation stability
6
作者 Dami Li Shangde Sun Jingnan Chen 《Grain & Oil Science and Technology》 CAS 2024年第1期1-11,共11页
Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailab... Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailability than free phytosterols.In recent years,phytosterol esters have attracted increasing attention.However,during food processing,phytosterol esters are susceptible to degradation at high temperatures,resulting in certain losses and formation of potentially harmful substances for humans.This paper reviews the relevant literatures and updates on the thermal oxidation stability of phytosterol esters in recent years from the following aspects:(i)Sources,physiological activities,and applications of phytosterol esters;(ii)Oxidation mechanism of phytosterol esters;(iii)Effects of phytosterols species,the volume of addition,food matrix,heating temperature and time,and antioxidants on the thermal loss and oxidation stability of phytosterol esters.The research progress on the safety of phytosterol esters is also discussed in detail.Additionally,the prospects for future research are highlighted. 展开更多
关键词 thermal stability Loss rate Oxidation mechanism Phytosterol esters
下载PDF
The Effect of Uncaria gambir on Optical Properties and Thermal Stability of CNF/PVA Biocomposite Films
7
作者 Remon Lapisa Anna Niska Fauza +6 位作者 Dieter Rahmadiawan Krismadinata Dori Yuvenda Randi Purnama Putra Waskito Nandy Putra Hairul Abral 《Journal of Renewable Materials》 EI CAS 2024年第9期1593-1603,共11页
Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be u... Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials. 展开更多
关键词 Cellulose nanofiber biocomposite film optical properties Uncaria gambir thermal stability
下载PDF
Further Analysis of Machine Tool Dimensional Accuracy and Thermal Stability under Varying Floor Temperature
8
作者 Joel Arumun Shadrack Abiola 《World Journal of Engineering and Technology》 2024年第2期258-273,共16页
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d... Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool. 展开更多
关键词 Dimensional Accuracy Machine Tool Machine Floor thermal stability TEMPERATURE thermal Deviation
下载PDF
油酸锌/脲嘧啶复合热稳定剂对PVC性能的影响
9
作者 宋莉芳 李开元 +3 位作者 黄卓辰 霍慧文 夏慧芸 牛艳辉 《塑料》 CAS CSCD 北大核心 2024年第1期42-47,共6页
为了改善软质聚氯乙烯(PVC)的初始白度和长期热稳定性,制备由具有不饱和链的油酸锌和含氨基的脲嘧啶(6-氨基-1,3-二甲基脲嘧啶,DAU)组成的复合热稳定剂,添加合适的辅助稳定剂和增塑剂,进行聚氯乙烯热加工。采用刚果红试验法和干燥箱热... 为了改善软质聚氯乙烯(PVC)的初始白度和长期热稳定性,制备由具有不饱和链的油酸锌和含氨基的脲嘧啶(6-氨基-1,3-二甲基脲嘧啶,DAU)组成的复合热稳定剂,添加合适的辅助稳定剂和增塑剂,进行聚氯乙烯热加工。采用刚果红试验法和干燥箱热老化试验法分析复合稳定剂对PVC静态热稳定性的影响;采用转矩流变测试评价其对PVC动态热稳定性的影响;利用红外光谱法研究复合稳定剂的热稳定机理。结果表明,油酸锌与脲嘧啶复合后,稳定剂与PVC的相容性提高,初始白度得到改善;复合稳定剂中DAU与油酸锌(DAU/Zn)的最佳比例为4∶1,长期热稳定性可达100 min;另外,加入辅助稳定剂和增塑剂使PVC的热稳定效果得到进一步改善。 展开更多
关键词 聚氯乙烯 油酸锌 脲嘧啶 热稳定性 热稳定机理
下载PDF
Intrinsic thermal stability of inverted perovskite solar cells based on electrochemical deposited PEDOT 被引量:2
10
作者 Congtan Zhu Jing Gao +2 位作者 Tian Chen Xueyi Guo Ying Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期445-453,I0011,共10页
Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two dif... Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two different hole transport layers(HTL), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)(PEDOT), is comprehensively studied by applying a heat treatment at 85℃. The thermal stress causes the mutual ions migration of I, Pb and Ag through the device, which leads to the thermal decomposition of perovskite to form Pb I2. Interestingly, we find that I ions tend to migrate more towards electron transport layer(ETL) during heating, which is different with the observation of I ions migration towards HTL when bias pressure is applied. Moreover, the use of electrochemical deposited PEDOT as HTL significantly decreases the defect density of MAPb I3films as compared to PEDOT:PSS supported one. The electrochemical deposition PEDOT has good carrier mobility and low acidity, which avoids the drawbacks of aqueous PEDOT:PSS. Accordingly, the inverted PSCs based on PEDOT show superior durability than that with PEDOT:PSS. Our results reveal detailed degradation routes of a new kind of inverted PSCs which can contribute to the understanding of the failure of thermal-aged inverted PSCs. 展开更多
关键词 Inverted perovskite solarcells CH_(3)NH_(3)Pbl_(3) thermal stability Electrochemical deposition PEDOT
下载PDF
Thermal–moisture dynamics and thermal stability of active layer in response to wet/dry conditions in the central region of the Qinghai–Tibet Plateau,China 被引量:1
11
作者 MingLi Zhang ZhiXiong Zhou +3 位作者 Zhi Wen FengXi Zhou Zhao Ma BingBing Lei 《Research in Cold and Arid Regions》 CSCD 2023年第1期27-38,共12页
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala... The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil. 展开更多
关键词 Active layer Wet/dry conditions Qinghai-Tibet Plateau(QTP) thermal-moisture dynamics Permafrost thermal stability Numerical modelling
下载PDF
开关柜内部PVC电缆绝缘材料过热产气的传感器检测方法研究
12
作者 董驰 庞先海 +6 位作者 路士杰 乐相宏 雷芳菲 褚继峰 杨爱军 王小华 荣命哲 《全球能源互联网》 CSCD 北大核心 2024年第6期726-737,共12页
作为电力系统中的重要设备,开关设备电缆故障可能导致局部停电,传统的温度测量方法存在接触试验、成本高、盲区等缺点。为了克服这些限制,提出了一种基于半导体气体传感器检测开关柜中电缆过热的方法。首先,研究电缆外层绝缘常用的聚氯... 作为电力系统中的重要设备,开关设备电缆故障可能导致局部停电,传统的温度测量方法存在接触试验、成本高、盲区等缺点。为了克服这些限制,提出了一种基于半导体气体传感器检测开关柜中电缆过热的方法。首先,研究电缆外层绝缘常用的聚氯乙烯(polyvinyl chloride,PVC)材料的过热生成气体组分,基于分解气体类型,构建气体传感器阵列。其次,模拟电缆过热故障,采集气体传感器在不同温度下的响应曲线,通过响应曲线的阈值判断过热温度区间。最后,以此为基础设计开关柜电缆过热检测装置,该装置在通风橱中大电流模拟电缆过热场景中能准确的区分出开关柜电缆过热状态并发出警报。 展开更多
关键词 开关设备 pvc绝缘 过热检测 气体传感器 热分解
下载PDF
Studies on Thermal Stability and Fluid Property of PVC Filled with Hydrotalcite 被引量:1
13
作者 ZHANG Qiang LU Jie-bin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第4期424-426,共3页
Hydrotalcite can act as a co-stabilizer with other main stabilizer for poly(vinyl chloride)(PVC). The thermal stability and fluid property of PVC filled with hydrotalcite surface-treated with titanate and silane were ... Hydrotalcite can act as a co-stabilizer with other main stabilizer for poly(vinyl chloride)(PVC). The thermal stability and fluid property of PVC filled with hydrotalcite surface-treated with titanate and silane were studied in this work. Organic Sn is a main stabilizer and hydrotalcite is a stabilizing assistant. The stability of the PVC resin mixed with organic Sn and hydrotalcite is better than that of the PVC resin mixed with organic Sn alone. It is shown that the PVC resin filled with hydrotalcite possesses a better static and dynamic heat stability. Moreover, hydrotalcite can improve the fluid property of PVC, which is advantageous to the processing of PVC, and the optimum content of hydrotalcite is about 1%-2%(mass fraction). 展开更多
关键词 HYDROTALCITE pvc thermal stability Fluid property
下载PDF
Optimizing the morphology of all-polymer solar cells for enhanced photovoltaic performance and thermal stability
14
作者 Kang An Wenkai Zhong +8 位作者 Chunguang Zhu Feng Peng Lei Xu Zhiwei Lin Lei Wang Cheng Zhou Lei Ying Ning Li Fei Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期34-41,共8页
Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential dep... Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential deposition method is used to fabricate the photoactive layers of all-PSCs comprising a polymer donor PTzBI-oF and a polymer acceptor PS1. The film morphology can be manipulated by incorporating amounts of a dibenzyl ether additive into the PS1 layer. Detailed morphology investigations by grazing incidence wide-angle X-ray scattering and a transmission electron microscope reveal that the combination merits of sequential deposition and DBE additive can render favorable crystalline properties as well as phase separation for PTzBI-oF:PS1 blends. Consequently, the optimized all-PSCs delivered an enhanced power conversion efficiency(PCE) of 15.21%along with improved carrier extraction and suppressed charge recombination. More importantly, the optimized all-PSCs remain over 90% of their initial PCEs under continuous thermal stress at 65 °C for over 500 h. This work validates that control over microstructure morphology via a sequential deposition process is a promising strategy for fabricating highly efficient and stable all-PSCs. 展开更多
关键词 MORPHOLOGY all-polymer solar cells thermal stability sequential deposition
下载PDF
Stability and Thermal Property Optimization of Propylene Glycol-Based MWCNT Nanofluids
15
作者 Xi Wang Shan Qing +3 位作者 Zhumei Luo Yiqin Liu Zichang Shi Jiachen Li 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2399-2416,共18页
Propylene glycol-based MWCNT(multi-walled carbon nanotubes)nanofluids were prepared in the framework of a two-step method and by using a suitable PVP(polyvinyl pyrrolidone)dispersant.The BBD(Box-Behnken design)model wa... Propylene glycol-based MWCNT(multi-walled carbon nanotubes)nanofluids were prepared in the framework of a two-step method and by using a suitable PVP(polyvinyl pyrrolidone)dispersant.The BBD(Box-Behnken design)model was exploited to analyze 17 sets of experiments and examine the sensitivity of the absorbance to three parameters,namely the concentration of MWCNT,the SN ratio(mass ratio of carbon nanotubes to sur-factants)and the sonication time.The results have revealed that,while the SN ratio and concentration of MWCNT have a strong effect on the absorbance,the influence of the sonication time is less important.The sta-tistical method of analysis of variance(ANOVA)was further used to determine the F-and p-values of the model.Five experiments were run to validate this approach.Since sample 2 was found to display the greatest absorbance,it was selected for stability monitoring as well as thermal conductivity and viscosity measurements.This sample has been found to be stable;the viscosity decreased with increasing temperature;the addition of MWCNT nano-particles was more effective in improving the thermal conductivity of propylene glycol than other methods in the literature.Moreover,the MWCNT nanofluid based on propylene glycol exhibited higher thermal conductivity at low temperatures. 展开更多
关键词 Propylene glycol thermal conductivity response surface methodology stability VISCOSITY
下载PDF
17.13% Efficiency and Superior Thermal Stability of Organic Solar Cells Based on a Comb-Shape Active Blend
16
作者 Zhipeng Yin Qingjie Wang +3 位作者 Huan Zhao Haiqiao Wang Ning Li Weijie Song 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期266-272,共7页
With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stab... With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stability of OSCs is far from meeting the requirements of the application.Here,based on the layer-by-layer(LBL)process and by utilizing the dissolubility nature of solvent and materials,binary inverted OSCs(ITO/AZO/PM6/BTP-eC9/MoO3/Ag)with comb shape active morphology are fabricated.High efficiency of 17.13%and simultaneous superior thermal stability(with 93%of initial efficiency retained in~9:00 h under 85℃in N_(2))are demonstrated,showing superior stability to reference cells.The enhancements are attributed to the formed optimal comb shape of the active layer,which could provide a larger D/A interface,thus more charge carriers,render the active blend a more stable morphology,and protect the electrode by impeding ion's migration and corrosion.To the best of our knowledge,this is the best thermal stability of binary OSCs reported in the literature,especially when considering the high efficiency of over 17%. 展开更多
关键词 comb-shape blend high efficiency organic solar cell thermal stability
下载PDF
Exceptional thermal stability and enhanced hardness in a nanostructured Mg-Gd-Y-Zn-Zr alloy processed by high pressure torsion
17
作者 Wanting Sun Yang He +5 位作者 Xiaoguang Qiao Xiaojun Zhao Houwen Chen Nong Gao Marco J.Starink Mingyi Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4589-4602,共14页
A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy ... A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries. 展开更多
关键词 Mg-RE alloy High pressure torsion thermal stability Grain growth Solute segregation Phase transformation
下载PDF
Thermal stability analysis of a satellite-borne optical bench based on quasi-kinematic support
18
作者 Huan Zhang ChunYu Yu +3 位作者 Le Suo WenBo Luo Ding Yuan JiaMing Ou 《Earth and Planetary Physics》 EI CSCD 2023年第1期119-124,共6页
Macao Science Satellite-1(known as MSS-1)is a low-inclination mission that will be launched at the beginning of 2023.An optical bench is used for accessing high-precision strength and direction measurements of the mag... Macao Science Satellite-1(known as MSS-1)is a low-inclination mission that will be launched at the beginning of 2023.An optical bench is used for accessing high-precision strength and direction measurements of the magnetic field.In this paper,we present a thermal stability design for the optical bench based on quasi-kinematic support by kinematic hinges on the MSS-1.The change in angles with the finite element method(FEM)model modified by thermal deformation test data is analyzed.The robustness of the structure is also investigated via the Monte Carlo method.Two main results are obtained.First,the peak-to-peak value(Vp-p)of the inter-boresight angle is at most 1.24″,and the Vp-p of the inter-boresight angle modification and analysis is no more than 3.13″,both of which are better than those on the Swarm satellites in orbit.Second,the 90°fibers of the carbon-reinforced arm need to be strictly controlled during the technological process. 展开更多
关键词 thermal stability finite element method Monte Carlo
下载PDF
掺配废PVC对水煤浆成浆性能及燃烧性能的影响
19
作者 李懂 李寒旭 +2 位作者 焦发存 王宁宁 陈建杨 《煤炭工程》 北大核心 2024年第2期178-185,共8页
为缓解废PVC处理压力,回收碳氢资源,将废PVC与煤粉混合制备废PVC-煤浆,分析掺配废PVC后浆体的定黏质量分数、流变特性及稳定性。利用SEM-EDX和分形理论对掺配废PVC的浆体表观形貌和分形维数进行分析,探讨掺配废PVC对煤浆性能的影响机理... 为缓解废PVC处理压力,回收碳氢资源,将废PVC与煤粉混合制备废PVC-煤浆,分析掺配废PVC后浆体的定黏质量分数、流变特性及稳定性。利用SEM-EDX和分形理论对掺配废PVC的浆体表观形貌和分形维数进行分析,探讨掺配废PVC对煤浆性能的影响机理。利用热重分析法和Coats-Redfern积分法计算原煤浆及废PVC-煤浆的燃烧特性指数和动力学参数,对不同废PVC掺配量浆体的燃烧性能进行评价。结果表明:掺配废PVC可以提高浆体的成浆性但析水率升高、稳定性有所下降;废PVC的掺配量越多,浆体的分形维数越小,成浆浓度越高;掺配废PVC对煤浆燃烧会产生协同作用,当废PVC的添加量为3%和5%时,煤浆的燃尽率和综合燃烧性能变好,促进燃烧反应,添加量为8%和10%时抑制燃烧反应;在选取Coats-Redfern近似时,水煤浆燃烧在选取反应级数n=1时线性相关性最高,掺配5%的废PVC后的浆体表观活化能和频率因子最大。 展开更多
关键词 pvc 成浆性能 燃烧性能 热分析 动力学分析 塑料回收
下载PDF
2-氨基烟酸镧铈对PVC热稳定性的影响
20
作者 杨羽轩 杜桂芳 +5 位作者 柳召刚 赵金钢 陈明光 胡艳宏 吴锦绣 冯福山 《材料导报》 EI CAS CSCD 北大核心 2024年第7期255-262,共8页
以2-氨基烟酸(2-ANA)、Ce(NO_(3))_(3)、La(NO_(3))_(3)和NaOH为原料,合成出2-氨基烟酸镧铈(2-LCANA),研究2-LCANA及其复配稳定剂对聚氯乙烯(PVC)热稳定性能、流变性能和力学性能的影响。结果表明,2-LCANA及其复配稳定剂提高了PVC的热... 以2-氨基烟酸(2-ANA)、Ce(NO_(3))_(3)、La(NO_(3))_(3)和NaOH为原料,合成出2-氨基烟酸镧铈(2-LCANA),研究2-LCANA及其复配稳定剂对聚氯乙烯(PVC)热稳定性能、流变性能和力学性能的影响。结果表明,2-LCANA及其复配稳定剂提高了PVC的热稳定性能,当m(2-LCANA)∶m(ZnSt_(2))∶m(PE)=2∶1∶2时,其热稳定时间为38 min,可以减小在加工过程中的损耗,增强PVC的力学性能,但是随着温度升高2-LCANA要比m(2-LCANA)∶m(ZnSt_(2))∶m(PE)=2∶1∶2的复配稳定剂抑制PVC降解反应发生更有效。2-LCANA能够吸收PVC降解释放的HCl气体,生成LaCl_(3)和CeCl_(3),减弱了HCl对PVC降解的催化作用,可以有效地阻止PVC链上C-Cl和与氯相连的C-H断裂,减少共轭双键的生成,减缓PVC变色,延缓了PVC的热降解。 展开更多
关键词 2-氨基烟酸镧铈 聚氯乙烯 热稳定性能 降解 协同效应
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部