In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h...In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.展开更多
The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition de...The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.展开更多
A three-dimensional numerical model is developed to study the behaviour of an argon-nitrogen plasma arc inside a non-transferred torch. In this model, both the entire cathode and anode nozzle are considered to simulat...A three-dimensional numerical model is developed to study the behaviour of an argon-nitrogen plasma arc inside a non-transferred torch. In this model, both the entire cathode and anode nozzle are considered to simulate the plasma arc. The argon-nitrogen plasma arc is simulated for different arc currents and gas flow rates of argon. Various combinations of arc core radius and arc length, which correspond to a given torch power, are predicted. A most feasible combination of the same, which corresponds to an actual physical situation of the arc inside the torch, is identified using the thermodynamic principle of minimum entropy production for a particular torch power. The effect of the arc current and gas flow rate on the plasma arc characteristics and torch efficiency is explained. The effect of the nitrogen content in the plasma gas on the torch power and efficiency is clearly detected. Predicted torch efficiencies are comparable to the measured ones and the effect of the arc current and gas flow rate on predicted and measured efficiencies is almost similar. The efficiency of the torch, cathode and anode losses and core temperature and velocity at the nozzle exit are reported for five different cases.展开更多
Hydrogels are biomaterials with 3D networks of hydrophilic polymers.The generation of hydrogels is turning to the development of hydrogels with the help of enabling technologies.Plasma can tailor the hydrogels’proper...Hydrogels are biomaterials with 3D networks of hydrophilic polymers.The generation of hydrogels is turning to the development of hydrogels with the help of enabling technologies.Plasma can tailor the hydrogels’properties through simultaneous physical and chemical actions,resulting in an emerging technology of plasma-activated hydrogels(PAH).PAH can be divided into functional PAH and biological tissue model PAH.This review systematically introduces the plasma sources,plasma etching polymer surface,and plasma cross-linking involved in the fabrication of PAH.The‘diffusion-drift-reaction model’is used to study the microscopic physicochemical interaction between plasma and biological tissue PAH models.Finally,the main achievements of PAH,including wound treatment,sterilization,3D tumor model,etc,and their development trends are discussed.展开更多
Tungsten,a leading candidate for plasma-facing materials(PFM) in future fusion devices,will be exposed to high-flux low-energy helium plasma under the anticipated fusion operation conditions.In the past two decades,ex...Tungsten,a leading candidate for plasma-facing materials(PFM) in future fusion devices,will be exposed to high-flux low-energy helium plasma under the anticipated fusion operation conditions.In the past two decades,experiments have revealed that exposure to helium plasma strongly modifies the surface morphology and hence the sputtering,thermal and other properties of tungsten,posing a serious danger to the performance and lifetime of tungsten and the steadystate operation of plasma.In this article,we provide a review of modeling and simulation efforts on the long-term evolution of helium bubbles,surface morphology,and property changes of tungsten exposed to low-energy helium plasma.The current gap and outstanding challenges to establish a predictive modeling capability for dynamic evolution of PFM are discussed.展开更多
By using alternating current plasma arc welding,the influences were studied of such parameters as welding curent,arc voltage,welding speed,wire feed rate,and magnitude of ion gas flow on front melting width,wdle rei...By using alternating current plasma arc welding,the influences were studied of such parameters as welding curent,arc voltage,welding speed,wire feed rate,and magnitude of ion gas flow on front melting width,wdle reinforcement,and back melting width of LF6 aluminum alloy.Model of the formation of welding seam in alternating current plasma arc welding of aluminum was set up with the method of artificial neural neural network - BP algorithm. Qyakuty of formation was consequently predicted and evaluated.The experimental result shows that,compared with other modeling methods,artificial network model can be used to more accurately predict formation of weld,and to guide the production practice.展开更多
A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain ...A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200 W and a filling gas pressure of 50 Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3 cm from the quartz window.展开更多
A theoretical model is presented to describe the electromagnetic, heat transfer and fluid flow phenomena within a magnetron plasma torch and in the resultant plume, by using a commercial computational fluid dynamics ...A theoretical model is presented to describe the electromagnetic, heat transfer and fluid flow phenomena within a magnetron plasma torch and in the resultant plume, by using a commercial computational fluid dynamics (CFD) code FLUENT. Specific calculations are pre- sented for a pure argon system (i.e., an argon plasma discharging into an argon environment), operated in a turbulent mode. An important finding of this work is that the external axial magnetic field (AMF) may have a significant effect on the behavior of arc plasma and thus affects the resulting plume. The AMF impels the plasma to retract axially and expand radially. As a result, the plasma intensity distribution on the cross section of torch seems to be more uniform. Numerical results also show that with AMF, the highest plasma temperature decreases and the anode arc root moves upstream significantly, while the current density distribution at the anode is more concentrated with a higher peak value. In addition, the use of AMF then induces a strong backflow at the torch spout and its magnitude increases with the AMF strength but decreases with the inlet gas velocity.展开更多
The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these pa...The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.展开更多
AIM To evaluate the angiogenic effect of platelet-rich plasma(PRP)-preconditioned adipose-derived stem cells(ADSCs) both in vitro and in a mouse ischemic hindlimb model.METHODS ADSCs were divided based on culture medi...AIM To evaluate the angiogenic effect of platelet-rich plasma(PRP)-preconditioned adipose-derived stem cells(ADSCs) both in vitro and in a mouse ischemic hindlimb model.METHODS ADSCs were divided based on culture medium: 2.5% PRP, 5% PRP, 7.5% PRP, and 10% PRP. Cell proliferation rate was analyzed using the MTS assay. The gene expression of CD31, vascular endothelial growth factor, hypoxia-inducible factors, and endothelial cell nitric oxide synthase was analyzed using reverse transcription polymerase chain reaction. Cell markers and structural changes were assessed through immunofluorescence staining and the tube formation assay. Subsequently, we studied the in vivo angiogenic capabilities of ADSCs by a mouse ischemic hindlimb model.RESULTS The proliferation rate of ADSCs was higher in the 2.5%, 5%, and 7.5% PRP groups. The expression of hypoxia-inducible factor, CD31, vascular endothelial growth factor, and endothelial cell nitric oxide synthase in the 5% and 7.5% PRP groups increased. The 5%, 7.5%, and 10% PRP groups showed higher abilities to promote both CD31 and vascular endothelial growth factor production and tubular structure formation in ADSCs. According to laser Doppler perfusion scan, the perfusion ratios of ischemic limb to normal limb were significantly higher in 5% PRP, 7.5% PRP, and human umbilical vein endothelial cells groups compared with the negative control and fetal bovine serum(FBS) groups(0.88 ± 0.08, 0.85 ± 0.07 and 0.81 ± 0.06 for 5%, 7.5% PRP and human umbilical vein endothelial cells compared with 0.42 ± 0.17 and 0.54 ± 0.14 for the negative control and FBS, P < 0.01).CONCLUSION PRP-preconditioned ADSCs presented endothelial cell characteristics in vitro and significantly improved neovascularization in ischemic hindlimbs. The optimal angiogenic effect occurred in 5% PRP-and 7.5% PRPpreconditioned ADSCs.展开更多
It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in ke...It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in keyhole plasma arc welding is determined firstly, and then the dynamic force-balance condition on the interface between the plasma jet and the molten metal is dealt with in describing the keyhole formation inside the weld pool. The effects of welding current on the shape and size of keyhole are numerically analyzed. The sharp transformation from a partial keyhole to a full-penetration keyhole is quantitatively demonstrated.展开更多
Optimization studies of plasma smelting of red mud were carried out. Reduction of the dried red mud fines was done in an extended arc plasma reactor to recover the pig iron. Lime grit and low ash metallurgical (LAM)...Optimization studies of plasma smelting of red mud were carried out. Reduction of the dried red mud fines was done in an extended arc plasma reactor to recover the pig iron. Lime grit and low ash metallurgical (LAM) coke were used as the flux and reductant, respectively. 2level factorial design was used to study the influence of all parameters on the responses. Response surface modeling was done with the data obtained from statistically designed experiments. Metal recovery at optimum parameters was found to be 79.52%.展开更多
Based on the analysis of the physical mechanism of the Stationary Plasma Thruster (SPT), an integral equation describing the ion density of the steady SPT and the ion velocity distribution function at an arbitrary a...Based on the analysis of the physical mechanism of the Stationary Plasma Thruster (SPT), an integral equation describing the ion density of the steady SPT and the ion velocity distribution function at an arbitrary axial position of the steady SPT channel are derived. The integral equation is equivalent to the Vlasov equation, but the former is simpler than the latter. A one dimensional steady quasineutral hybrid model is established. In this model, ions are described by the above integral equation, and neutrals and electrons are described by hydrodynamic equations. The transferred equivalency to the differential equation and the integral equation, together with other equations, are solved by an ordinary differential equation (ODE) solver in the Matlab. The numerical simulation results show that under various circumstances, the ion average velocity would be different and needs to be deduced separately.展开更多
Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and th...Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.展开更多
A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low- temperature plasmas. However, in many cases,...A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low- temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and kryp- ton atoms. For applications of this approach in reactive gas (CF4, O2, etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail.展开更多
A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found tha...A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube.展开更多
The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the ...The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.展开更多
High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform wa...High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed.展开更多
The weakly ionized plasma flows in aerospace are commonly simulated by the single-fluid model,which cannot describe certain nonequilibrium phenomena by finite collisions of particles,decreasing the fidelity of the sol...The weakly ionized plasma flows in aerospace are commonly simulated by the single-fluid model,which cannot describe certain nonequilibrium phenomena by finite collisions of particles,decreasing the fidelity of the solution.Based on an alternative formulation of the targeted essentially non-oscillatory(TENO)scheme,a novel high-order numerical scheme is proposed to simulate the two-fluid plasmas problems.The numerical flux is constructed by the TENO interpolation of the solution and its derivatives,instead of being reconstructed from the physical flux.The present scheme is used to solve the two sets of Euler equations coupled with Maxwell's equations.The numerical methods are verified by several classical plasma problems.The results show that compared with the original TENO scheme,the present scheme can suppress the non-physical oscillations and reduce the numerical dissipation.展开更多
A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate ...A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.展开更多
基金appreciate the support of the Key Laboratory of Mechanical Structure Optimization&Material Application Technology of Luzhou(No.SCHYZSA-2022-02)the Scientific Research and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A004)+1 种基金the Key Laboratory of Intelligent Manufacturing of Construction Machinery Project(No.IMCM202103)the Panzhihua Key Laboratory of Advanced Manufacturing Technology Open Fund Project(No.2022XJZD01)。
文摘In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.
文摘The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.
文摘A three-dimensional numerical model is developed to study the behaviour of an argon-nitrogen plasma arc inside a non-transferred torch. In this model, both the entire cathode and anode nozzle are considered to simulate the plasma arc. The argon-nitrogen plasma arc is simulated for different arc currents and gas flow rates of argon. Various combinations of arc core radius and arc length, which correspond to a given torch power, are predicted. A most feasible combination of the same, which corresponds to an actual physical situation of the arc inside the torch, is identified using the thermodynamic principle of minimum entropy production for a particular torch power. The effect of the arc current and gas flow rate on the plasma arc characteristics and torch efficiency is explained. The effect of the nitrogen content in the plasma gas on the torch power and efficiency is clearly detected. Predicted torch efficiencies are comparable to the measured ones and the effect of the arc current and gas flow rate on predicted and measured efficiencies is almost similar. The efficiency of the torch, cathode and anode losses and core temperature and velocity at the nozzle exit are reported for five different cases.
基金supported by National Natural Science Foundation of China(No.52277149)the Interdisciplinary Program of Wuhan National High Magnetic Field Center(No.WHMFC202144)Huazhong University of Science and Technology.
文摘Hydrogels are biomaterials with 3D networks of hydrophilic polymers.The generation of hydrogels is turning to the development of hydrogels with the help of enabling technologies.Plasma can tailor the hydrogels’properties through simultaneous physical and chemical actions,resulting in an emerging technology of plasma-activated hydrogels(PAH).PAH can be divided into functional PAH and biological tissue model PAH.This review systematically introduces the plasma sources,plasma etching polymer surface,and plasma cross-linking involved in the fabrication of PAH.The‘diffusion-drift-reaction model’is used to study the microscopic physicochemical interaction between plasma and biological tissue PAH models.Finally,the main achievements of PAH,including wound treatment,sterilization,3D tumor model,etc,and their development trends are discussed.
基金supported by National Natural Science Foundation of China(No.11905071)the National MCF Energy R&D Program(No.2018YFE0308103)
文摘Tungsten,a leading candidate for plasma-facing materials(PFM) in future fusion devices,will be exposed to high-flux low-energy helium plasma under the anticipated fusion operation conditions.In the past two decades,experiments have revealed that exposure to helium plasma strongly modifies the surface morphology and hence the sputtering,thermal and other properties of tungsten,posing a serious danger to the performance and lifetime of tungsten and the steadystate operation of plasma.In this article,we provide a review of modeling and simulation efforts on the long-term evolution of helium bubbles,surface morphology,and property changes of tungsten exposed to low-energy helium plasma.The current gap and outstanding challenges to establish a predictive modeling capability for dynamic evolution of PFM are discussed.
文摘By using alternating current plasma arc welding,the influences were studied of such parameters as welding curent,arc voltage,welding speed,wire feed rate,and magnitude of ion gas flow on front melting width,wdle reinforcement,and back melting width of LF6 aluminum alloy.Model of the formation of welding seam in alternating current plasma arc welding of aluminum was set up with the method of artificial neural neural network - BP algorithm. Qyakuty of formation was consequently predicted and evaluated.The experimental result shows that,compared with other modeling methods,artificial network model can be used to more accurately predict formation of weld,and to guide the production practice.
基金Project supported by the Special Fund of National High-Tech Development and Research Plan (Grant No 2008AA12A214)
文摘A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200 W and a filling gas pressure of 50 Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3 cm from the quartz window.
基金National Natural Science Foundation of China(Nos.10375065,10675122)
文摘A theoretical model is presented to describe the electromagnetic, heat transfer and fluid flow phenomena within a magnetron plasma torch and in the resultant plume, by using a commercial computational fluid dynamics (CFD) code FLUENT. Specific calculations are pre- sented for a pure argon system (i.e., an argon plasma discharging into an argon environment), operated in a turbulent mode. An important finding of this work is that the external axial magnetic field (AMF) may have a significant effect on the behavior of arc plasma and thus affects the resulting plume. The AMF impels the plasma to retract axially and expand radially. As a result, the plasma intensity distribution on the cross section of torch seems to be more uniform. Numerical results also show that with AMF, the highest plasma temperature decreases and the anode arc root moves upstream significantly, while the current density distribution at the anode is more concentrated with a higher peak value. In addition, the use of AMF then induces a strong backflow at the torch spout and its magnitude increases with the AMF strength but decreases with the inlet gas velocity.
基金supported by Important National Science & Technology Specific Projects of China (No.2) (Nos.2009ZX02001,2011ZX02403)
文摘The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.
基金Supported by grant from the National Sci-Tech Program,Ministry of Science and Technology,No.NRMPG3E0471 and No.NMRPG3D0231a Chang Gung Memorial Hospital grant,No.CMRPGBH0011
文摘AIM To evaluate the angiogenic effect of platelet-rich plasma(PRP)-preconditioned adipose-derived stem cells(ADSCs) both in vitro and in a mouse ischemic hindlimb model.METHODS ADSCs were divided based on culture medium: 2.5% PRP, 5% PRP, 7.5% PRP, and 10% PRP. Cell proliferation rate was analyzed using the MTS assay. The gene expression of CD31, vascular endothelial growth factor, hypoxia-inducible factors, and endothelial cell nitric oxide synthase was analyzed using reverse transcription polymerase chain reaction. Cell markers and structural changes were assessed through immunofluorescence staining and the tube formation assay. Subsequently, we studied the in vivo angiogenic capabilities of ADSCs by a mouse ischemic hindlimb model.RESULTS The proliferation rate of ADSCs was higher in the 2.5%, 5%, and 7.5% PRP groups. The expression of hypoxia-inducible factor, CD31, vascular endothelial growth factor, and endothelial cell nitric oxide synthase in the 5% and 7.5% PRP groups increased. The 5%, 7.5%, and 10% PRP groups showed higher abilities to promote both CD31 and vascular endothelial growth factor production and tubular structure formation in ADSCs. According to laser Doppler perfusion scan, the perfusion ratios of ischemic limb to normal limb were significantly higher in 5% PRP, 7.5% PRP, and human umbilical vein endothelial cells groups compared with the negative control and fetal bovine serum(FBS) groups(0.88 ± 0.08, 0.85 ± 0.07 and 0.81 ± 0.06 for 5%, 7.5% PRP and human umbilical vein endothelial cells compared with 0.42 ± 0.17 and 0.54 ± 0.14 for the negative control and FBS, P < 0.01).CONCLUSION PRP-preconditioned ADSCs presented endothelial cell characteristics in vitro and significantly improved neovascularization in ischemic hindlimbs. The optimal angiogenic effect occurred in 5% PRP-and 7.5% PRPpreconditioned ADSCs.
文摘It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in keyhole plasma arc welding is determined firstly, and then the dynamic force-balance condition on the interface between the plasma jet and the molten metal is dealt with in describing the keyhole formation inside the weld pool. The effects of welding current on the shape and size of keyhole are numerically analyzed. The sharp transformation from a partial keyhole to a full-penetration keyhole is quantitatively demonstrated.
基金Vedanta Alumina Ltd,a subsidiary of Vedanta Resources Plc for supporting the project financially
文摘Optimization studies of plasma smelting of red mud were carried out. Reduction of the dried red mud fines was done in an extended arc plasma reactor to recover the pig iron. Lime grit and low ash metallurgical (LAM) coke were used as the flux and reductant, respectively. 2level factorial design was used to study the influence of all parameters on the responses. Response surface modeling was done with the data obtained from statistically designed experiments. Metal recovery at optimum parameters was found to be 79.52%.
基金The project supported by National Fundamental Science Research Fundation of China (No. K1403060719)
文摘Based on the analysis of the physical mechanism of the Stationary Plasma Thruster (SPT), an integral equation describing the ion density of the steady SPT and the ion velocity distribution function at an arbitrary axial position of the steady SPT channel are derived. The integral equation is equivalent to the Vlasov equation, but the former is simpler than the latter. A one dimensional steady quasineutral hybrid model is established. In this model, ions are described by the above integral equation, and neutrals and electrons are described by hydrodynamic equations. The transferred equivalency to the differential equation and the integral equation, together with other equations, are solved by an ordinary differential equation (ODE) solver in the Matlab. The numerical simulation results show that under various circumstances, the ion average velocity would be different and needs to be deduced separately.
基金National Natural Science Foundation of China(Nos.11675177,11875256)the Anhui Province Scientific and Technological Project(No.1604a0902145).
文摘Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.
基金supported by National Natural Science Foundation of China (Nos. 11075093 and 10935006) and the China Postdoctoral Science Foundation (No. 20100480327)
文摘A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low- temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and kryp- ton atoms. For applications of this approach in reactive gas (CF4, O2, etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail.
基金supported by National Natural Science Foundation of China (Nos. 10575127, 10772016)the Doctoral Research Fund of Higher Education of China (No. 20070006022)
文摘A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube.
基金supported by National Natural Science Foundation of China(Grant No.61378037)the Fundamental Research Funds for the Central Universities(Nos.2013B33614,2017B15214)+1 种基金the Research Funds of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)the Changzhou Science and Technology Program(No.CJ20160027)
文摘The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.
基金support of National Natural Science Foundation of China(No.52177144)。
文摘High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed.
基金Project supported by the National Natural Science Foundation of China(Nos.12072246,11972272,11872286)the National Numerical Wind Tunnel Project of China(No.NNW2020ZT3-A23)。
文摘The weakly ionized plasma flows in aerospace are commonly simulated by the single-fluid model,which cannot describe certain nonequilibrium phenomena by finite collisions of particles,decreasing the fidelity of the solution.Based on an alternative formulation of the targeted essentially non-oscillatory(TENO)scheme,a novel high-order numerical scheme is proposed to simulate the two-fluid plasmas problems.The numerical flux is constructed by the TENO interpolation of the solution and its derivatives,instead of being reconstructed from the physical flux.The present scheme is used to solve the two sets of Euler equations coupled with Maxwell's equations.The numerical methods are verified by several classical plasma problems.The results show that compared with the original TENO scheme,the present scheme can suppress the non-physical oscillations and reduce the numerical dissipation.
基金support from National Natural Science Foundation of China(No.51875372)the Key R&D Program of Advanced Technology of Sichuan Science and Technology Department(No.2020YFG0111)。
文摘A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.