To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load ...To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.展开更多
For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the tra...For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.展开更多
Under unbalanced source voltage supply, considerable output second harmonics and input low-order harmonics in 3-phase PWM current-source converters (PWM-CSC) are generated. This paper proposes a new deadbeat controlle...Under unbalanced source voltage supply, considerable output second harmonics and input low-order harmonics in 3-phase PWM current-source converters (PWM-CSC) are generated. This paper proposes a new deadbeat controller based on compensation for unbalanced source voltage and current. With the proposed scheme, the second harmonics of the output current are eliminated and low-order harmonics of the source current are reduced effectively. Simulation and experimental results con- firmed the feasibility of the proposed method.展开更多
In this paper, a applied to an AC-DC-pulse nonlinear control strategy width modulation (PWM) converter is developed and simulated. First a nonlinear system modeling is derived with state variables of the input curre...In this paper, a applied to an AC-DC-pulse nonlinear control strategy width modulation (PWM) converter is developed and simulated. First a nonlinear system modeling is derived with state variables of the input current and the output voltage by using power balance of the input and output. The system is linearized and decoupled, and then a state feedback law is obtained. For robust control of parameter perturbation, integrators are added to the exact feedback control law. The simulation is provided to verify the validity of the control algorithm.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
The objective of this study is the simulation of the fuzzy control of a double-fed induction wind generator (DFIG) and oriented stator flux using MATLAB/S[MULINK. The system consists of a horizontal wind turbine, co...The objective of this study is the simulation of the fuzzy control of a double-fed induction wind generator (DFIG) and oriented stator flux using MATLAB/S[MULINK. The system consists of a horizontal wind turbine, coupled to a DFIG and driven by a feed consisting of two three+phase PWM converters in double bridge in order to maximize the delivered power at different wind speeds. We used a traditional regulator and a fuzzy controller. A model of the wind speed and the wind turbine is presented followed by the modeling of double-fed asynchronous generator DFIG controlled by fuzzy logic is performed according to two scenarios: with and without MPPT.展开更多
In this paper, an analytical technique is presented for time domain analysis (transient and steady-state response) of perturbed PWM push-pull DC-DC converter using interesting corollary on Kharitonov's theorem. The...In this paper, an analytical technique is presented for time domain analysis (transient and steady-state response) of perturbed PWM push-pull DC-DC converter using interesting corollary on Kharitonov's theorem. The main advantage of the proposed analysis is that even though the transfer function model of a PWM push-pull DC-DC converter is perturbed, the complete analysis has been done on a linear transfer function model of a PWM push-pull DC-DC converter. The proposed analysis is verified using MATLAB simulation. This analysis will be very much useful to power electronics engineers, since the technique is very simple and computationally efficient and easily applicable in precise applications such as aerospace applications.展开更多
In this paper, the design and verification process of an automobile-engine-fan control system on chip (SoC) are introduced. The SoC system, SHU-MV08, reuses four new intellectual property (IP) cores and the design...In this paper, the design and verification process of an automobile-engine-fan control system on chip (SoC) are introduced. The SoC system, SHU-MV08, reuses four new intellectual property (IP) cores and the design flow is accomplished with 0.35 btm chartered CMOS technology. Some special functions of IP cores, the detailed integration scheme of four IP cores, and the verification method of the entire SoC are presented. To settle the verification problems brought by analog IP cores, NanoSim based chip-level mixed-signal verification method is introduced. The verification time is greatly reduced and the first tape-out achieves success which proves the validity of our design.展开更多
For pulse-width modulated(PWM)DC-DC converters,the input voltage fluctuation and load variation in practical applications make it necessary for them to have better dynamic performance to meet the regulation requiremen...For pulse-width modulated(PWM)DC-DC converters,the input voltage fluctuation and load variation in practical applications make it necessary for them to have better dynamic performance to meet the regulation requirements of the system.The dynamic-performance-improvement method for PWM DC-DC converters is mainly based on indirect dynamic performance indices,such as the gain margin and phase margin.However,both settling time and overshoot in the time domain are important in practical engineering.This makes it difficult for designers to obtain a clear understanding of the time-domain dynamic performance that can be achieved with improved control.In this study,a direct analysis of the time-domain dynamic characteristic of PWM DC-DC converters is performed.A dynamic-performance-improvement method based on eigenvalues and eigenvector sensitivity(E2S-based DPIM)is proposed to directly improve the time-domain dynamic performance index of PWM DC-DC converters.By considering a boost converter with proportional-integral control as an example,an additional virtual inductor current feedback control was designed using the proposed dynamic-performance-improvement method.Simulation and experimental results verify the validity and accuracy of the proposed dynamic-performance-improvement method.展开更多
In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control...In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control were both analyzed. Besides, the transient simula- tion of no-load model and generation model of the BDFG have been developed on the MATLAB/Simulink platform. The test results during cutting-in grid confirmed the good dynamic performance of grid synchronization and effective power control approach for the BDFG-based variable speed wind turbines.展开更多
文摘To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.
基金supported by the National Natural Science Foundation of China under Grant 61733015,62473322High-Speed Railway Joint Funds of National Natural Science Foundation of China under Grant U1934204.
文摘For dq control strategies in single-phase pulse width modulation(PWM)converters,the-axis current must be created by imaginary axis current estimation(IACE)methods.The estimated error of the-axis current during the transient process causes d-q axis current loops to be incompletely decoupled,thereby affecting the dynamic performance of the current loop.The second-order generalized integrator(SOGI)method suffers from slow dynamic response.The fictive-axis emulation(FAE)method provides fast dynamic response but it is sensitive to circuit parameters.A reference-input(RI)-based IACE method is proposed to overcome the above shortcomings.According to the characteristic that the-axis current loop has no transient process,the-axis current is estimated by the d-q axis reference inputs.This is equivalent to introducing the-axis reference input as a feedforward term into the d-q axis current loop,so the parameter sensitivity problem is solved,and the parameter tuning is not needed.The proposed method can maintain good steadystate performance and significantly improve the dynamic performance of the current loop.Furthermore,it is straightforward and can be easily implemented in digital controllers.Comprehensive hardware-in-the-loop(HIL)experimental comparisons with the SOGI and FAE methods have been conducted to verify the correctness and effectiveness of the proposed RI-based IACE method.
基金Project (No. 50477033) supported by the National Nature ScienceFoundation of China
文摘Under unbalanced source voltage supply, considerable output second harmonics and input low-order harmonics in 3-phase PWM current-source converters (PWM-CSC) are generated. This paper proposes a new deadbeat controller based on compensation for unbalanced source voltage and current. With the proposed scheme, the second harmonics of the output current are eliminated and low-order harmonics of the source current are reduced effectively. Simulation and experimental results con- firmed the feasibility of the proposed method.
文摘In this paper, a applied to an AC-DC-pulse nonlinear control strategy width modulation (PWM) converter is developed and simulated. First a nonlinear system modeling is derived with state variables of the input current and the output voltage by using power balance of the input and output. The system is linearized and decoupled, and then a state feedback law is obtained. For robust control of parameter perturbation, integrators are added to the exact feedback control law. The simulation is provided to verify the validity of the control algorithm.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
文摘The objective of this study is the simulation of the fuzzy control of a double-fed induction wind generator (DFIG) and oriented stator flux using MATLAB/S[MULINK. The system consists of a horizontal wind turbine, coupled to a DFIG and driven by a feed consisting of two three+phase PWM converters in double bridge in order to maximize the delivered power at different wind speeds. We used a traditional regulator and a fuzzy controller. A model of the wind speed and the wind turbine is presented followed by the modeling of double-fed asynchronous generator DFIG controlled by fuzzy logic is performed according to two scenarios: with and without MPPT.
文摘In this paper, an analytical technique is presented for time domain analysis (transient and steady-state response) of perturbed PWM push-pull DC-DC converter using interesting corollary on Kharitonov's theorem. The main advantage of the proposed analysis is that even though the transfer function model of a PWM push-pull DC-DC converter is perturbed, the complete analysis has been done on a linear transfer function model of a PWM push-pull DC-DC converter. The proposed analysis is verified using MATLAB simulation. This analysis will be very much useful to power electronics engineers, since the technique is very simple and computationally efficient and easily applicable in precise applications such as aerospace applications.
基金Project supported by the IC Special Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.09706201300)the Shanghai Municipal Commission of Economic and Information (Grant No.090344)the Shanghai High-Tech Industrialization of New Energy Vehicles (Grant No.09625029),and the Graduate Innovation Foundation of Shanghai University
文摘In this paper, the design and verification process of an automobile-engine-fan control system on chip (SoC) are introduced. The SoC system, SHU-MV08, reuses four new intellectual property (IP) cores and the design flow is accomplished with 0.35 btm chartered CMOS technology. Some special functions of IP cores, the detailed integration scheme of four IP cores, and the verification method of the entire SoC are presented. To settle the verification problems brought by analog IP cores, NanoSim based chip-level mixed-signal verification method is introduced. The verification time is greatly reduced and the first tape-out achieves success which proves the validity of our design.
基金Supported by the Key Program of National Natural Science Foundation of China under Grant No.52237008.Digital Object Identifier:10.23919/CJEE.2023.000017。
文摘For pulse-width modulated(PWM)DC-DC converters,the input voltage fluctuation and load variation in practical applications make it necessary for them to have better dynamic performance to meet the regulation requirements of the system.The dynamic-performance-improvement method for PWM DC-DC converters is mainly based on indirect dynamic performance indices,such as the gain margin and phase margin.However,both settling time and overshoot in the time domain are important in practical engineering.This makes it difficult for designers to obtain a clear understanding of the time-domain dynamic performance that can be achieved with improved control.In this study,a direct analysis of the time-domain dynamic characteristic of PWM DC-DC converters is performed.A dynamic-performance-improvement method based on eigenvalues and eigenvector sensitivity(E2S-based DPIM)is proposed to directly improve the time-domain dynamic performance index of PWM DC-DC converters.By considering a boost converter with proportional-integral control as an example,an additional virtual inductor current feedback control was designed using the proposed dynamic-performance-improvement method.Simulation and experimental results verify the validity and accuracy of the proposed dynamic-performance-improvement method.
文摘In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control were both analyzed. Besides, the transient simula- tion of no-load model and generation model of the BDFG have been developed on the MATLAB/Simulink platform. The test results during cutting-in grid confirmed the good dynamic performance of grid synchronization and effective power control approach for the BDFG-based variable speed wind turbines.