Unveiling the signal transduction of phytohormone abscisic acid (ABA) and its regulatory mechanisms is critical for developing the strategies toward improving plant responses to stressful environments. ABA signaling...Unveiling the signal transduction of phytohormone abscisic acid (ABA) and its regulatory mechanisms is critical for developing the strategies toward improving plant responses to stressful environments. ABA signaling is perceived and mediated by multiple PYR/PYL receptors, whose post-translational modifications, especially phosphorylation, remain largely unknown. In this study, we demonstrate thatArabidopsis ELl-like (AEL) protein, a casein kinase that regulates various physiological processes, phosphorylate PYR/PYLs to promote their ubiquitination and degradation, resulting in suppressed ABA responses. Arabidopsis ael triple mutants display hypersensitive responses to ABA treatment, which is consistent with the suppressed degradation of PYR/PYL proteins. PYR/PYLs are phosphorylated in vivo and mutation of the conserved AEL phosphorylation sites results in reduced phosphorylation, ubiquitination, and degradation of PYR/PYLs, and hence enhanced ABA responses. Taken together, these results demonstrate that AEL-mediated phosphorylation plays crucial roles in regulating the stability and function of PYR/ PYLs, providing significant insights into the post-translational regulation of PYR/PYL receptors and ABA signaling.展开更多
Abscisic acid(ABA)is a major regulator of non-climacteric fruit ripening;however,the role of ABA in the ripening of climacteric fruit is not clear.Here,as a typical climacteric fruit,apricots were used to investigate ...Abscisic acid(ABA)is a major regulator of non-climacteric fruit ripening;however,the role of ABA in the ripening of climacteric fruit is not clear.Here,as a typical climacteric fruit,apricots were used to investigate the role of ABA in fruit ripening.Based on weighted gene coexpression network analysis(WGCNA)of our previous transcriptome data,we treated‘Danxing’fruit with exogenous ABA and obtained ABA receptor genes,genes related to ABA biosynthesis and signal transduction,and analyzed the response of these candidate genes to exogenous ABA during fruit ripening.Subsequently,the full length of candidate PYLs genes were cloned,and their putative function were analyzed by phylogenetic analysis and protein structure domain analysis.And then the function of one candidate gene PaPYL9 was verified by using transgenic tomato.Furthermore,the response genes in transgenic tomato were screened by transcriptome sequencing,and ultimately the related regulatory network was proposed.The results showed that the injection of exogenous 1.89 mmol·L^(-1) ABA remarkably promoted fruit coloration,and increased the color index for red grapes(CIRG)and the total soluble solids(TSS)content,but significantly decreased the firmness and titratable acid(TA)content(p<0.01).Nordihydroguaiaretic acid(NDGA),the inhibitor of ABA,appeared to have the converse role in TA,TSS,CIRG and firmness,during the ripening process.One NCED(9-cis-epoxycarotenoiddioxygenase)and five ABA receptor genes related to signal transduction were mined from the transcriptome data of apricot fruit through WGCNA.Compared with the control,the expression levels of NCED1,PYL9(PYR/PYL/RCAR),SnRK2(SUCROSE NON-FERMENTING1(SNF1)-RELATED PROTEIN KINASE 2S),and ABF2(ABRE-binding bZIP transcription)were induced dramatically by ABA treatment(p<0.01),while NDGA treatment significantly inhibited their expression.Based on gene expression and protein domain analysis,we inferred that PaPYL9 is putatively involved in apricot fruit ripening.Overexpression of PaPYL9 in Micro-TOM tomatoes resulted in the promotion of early ripening.Simultaneously,the expression levels of genes related ethylene biosynthesis,chlorophyll degradation,fruit softening,flavor formation,pigment synthesis,and metabolism were all significantly induced in overexpression of PaPYL9 tomatoes.This indicates the central role of ABA in climacteric fruit ripening.A regulatory network was tentatively proposed,laying the foundation to unveil the molecular mechanism of the regulatory role of PaPYL9 in fruit ripening.展开更多
植物激素脱落酸(ABA)参与从种子萌发到植物开花、结果和衰老等多个生长发育过程。研究ABA细胞信号转导的分子机制对进一步阐明其功能具有重要的意义。通过介绍FCA(Flowering Control Locus A)、Mg离子螯合酶H亚基(ABAR/CHLH)、G蛋白偶...植物激素脱落酸(ABA)参与从种子萌发到植物开花、结果和衰老等多个生长发育过程。研究ABA细胞信号转导的分子机制对进一步阐明其功能具有重要的意义。通过介绍FCA(Flowering Control Locus A)、Mg离子螯合酶H亚基(ABAR/CHLH)、G蛋白偶联受体(GCR2)、GTG1/GTG2(GPCR-type G-Proteins1/2)和PYR1/PYL/RCAR在ABA信号传导途径中的作用模式,阐述了其能够接受ABA信号并激活相关下游组分,从而完成其生理功能。展开更多
文摘Unveiling the signal transduction of phytohormone abscisic acid (ABA) and its regulatory mechanisms is critical for developing the strategies toward improving plant responses to stressful environments. ABA signaling is perceived and mediated by multiple PYR/PYL receptors, whose post-translational modifications, especially phosphorylation, remain largely unknown. In this study, we demonstrate thatArabidopsis ELl-like (AEL) protein, a casein kinase that regulates various physiological processes, phosphorylate PYR/PYLs to promote their ubiquitination and degradation, resulting in suppressed ABA responses. Arabidopsis ael triple mutants display hypersensitive responses to ABA treatment, which is consistent with the suppressed degradation of PYR/PYL proteins. PYR/PYLs are phosphorylated in vivo and mutation of the conserved AEL phosphorylation sites results in reduced phosphorylation, ubiquitination, and degradation of PYR/PYLs, and hence enhanced ABA responses. Taken together, these results demonstrate that AEL-mediated phosphorylation plays crucial roles in regulating the stability and function of PYR/ PYLs, providing significant insights into the post-translational regulation of PYR/PYL receptors and ABA signaling.
基金Project supported by the National Basic Research Program of China(No.2009CB119000)the Genetically Modified Organisms Breeding Major Projects(No.2009ZX08009-044B)+2 种基金the Program for New Century Excellent Talents in University(No.NCET-08-0485)the Program for New Century 151Talents of Zhejiang Provincethe National Natural Science Foundation of China(No.30871608and 30771406)
基金supported by the National Natural Science Foundation of China (Grant No. 31872046)
文摘Abscisic acid(ABA)is a major regulator of non-climacteric fruit ripening;however,the role of ABA in the ripening of climacteric fruit is not clear.Here,as a typical climacteric fruit,apricots were used to investigate the role of ABA in fruit ripening.Based on weighted gene coexpression network analysis(WGCNA)of our previous transcriptome data,we treated‘Danxing’fruit with exogenous ABA and obtained ABA receptor genes,genes related to ABA biosynthesis and signal transduction,and analyzed the response of these candidate genes to exogenous ABA during fruit ripening.Subsequently,the full length of candidate PYLs genes were cloned,and their putative function were analyzed by phylogenetic analysis and protein structure domain analysis.And then the function of one candidate gene PaPYL9 was verified by using transgenic tomato.Furthermore,the response genes in transgenic tomato were screened by transcriptome sequencing,and ultimately the related regulatory network was proposed.The results showed that the injection of exogenous 1.89 mmol·L^(-1) ABA remarkably promoted fruit coloration,and increased the color index for red grapes(CIRG)and the total soluble solids(TSS)content,but significantly decreased the firmness and titratable acid(TA)content(p<0.01).Nordihydroguaiaretic acid(NDGA),the inhibitor of ABA,appeared to have the converse role in TA,TSS,CIRG and firmness,during the ripening process.One NCED(9-cis-epoxycarotenoiddioxygenase)and five ABA receptor genes related to signal transduction were mined from the transcriptome data of apricot fruit through WGCNA.Compared with the control,the expression levels of NCED1,PYL9(PYR/PYL/RCAR),SnRK2(SUCROSE NON-FERMENTING1(SNF1)-RELATED PROTEIN KINASE 2S),and ABF2(ABRE-binding bZIP transcription)were induced dramatically by ABA treatment(p<0.01),while NDGA treatment significantly inhibited their expression.Based on gene expression and protein domain analysis,we inferred that PaPYL9 is putatively involved in apricot fruit ripening.Overexpression of PaPYL9 in Micro-TOM tomatoes resulted in the promotion of early ripening.Simultaneously,the expression levels of genes related ethylene biosynthesis,chlorophyll degradation,fruit softening,flavor formation,pigment synthesis,and metabolism were all significantly induced in overexpression of PaPYL9 tomatoes.This indicates the central role of ABA in climacteric fruit ripening.A regulatory network was tentatively proposed,laying the foundation to unveil the molecular mechanism of the regulatory role of PaPYL9 in fruit ripening.
文摘植物激素脱落酸(ABA)参与从种子萌发到植物开花、结果和衰老等多个生长发育过程。研究ABA细胞信号转导的分子机制对进一步阐明其功能具有重要的意义。通过介绍FCA(Flowering Control Locus A)、Mg离子螯合酶H亚基(ABAR/CHLH)、G蛋白偶联受体(GCR2)、GTG1/GTG2(GPCR-type G-Proteins1/2)和PYR1/PYL/RCAR在ABA信号传导途径中的作用模式,阐述了其能够接受ABA信号并激活相关下游组分,从而完成其生理功能。