Structural health monitoring(SHM)is a process for determination of presence,location,severity of damages and remaining life of the infrastructures.SHM is widely applied in aerospace,mechanical and civil engineering sy...Structural health monitoring(SHM)is a process for determination of presence,location,severity of damages and remaining life of the infrastructures.SHM is widely applied in aerospace,mechanical and civil engineering sys-tems to assess the conditions of structures to improve the operation,safety,serviceability and reliability,respec-tively.There are various SHM techniques for monitoring the health of structures such as global response based and local techniques.Damages occur in the structures due to its inability to withstand intended design loadings,physical environment and chemical environment.Therefore,damage identification is necessary to improve the durability of the structures for protection against catastrophic failure.The research paper is focused on elec-tro-mechanical impedance(EMI)technique which is one of the techniques based on smart materials.The smart materials are utilized for monitoring the health of the structures.These are used for damage determination and its quantification for the interrogated structures.Variation in admittance or impedance signature shows the existence of damage in the structures.Furthermore,the different statistical methods viz.,root mean square deviation(RMSD),mean absolute percentage deviation(MAPD),covariance(Cov),and correlation coefficient(CC)are used for the quantification of damage.Smart material such as piezoelectric materials,its properties and applica-tions are also considered.In this paper,the implementation of EMI technique based on different recent advances in smart materials and their appropriateness have been described.Subsequently,the reviewed investigations are significant for the monitoring of real-life infrastructures.The presented paper is the compact state-of-the-art for EMI technique which is used for SHM.This examination will be valuable to infrastructural health monitoring and engineering applications in respect to innovative research directions.展开更多
A low velocity impact response study has been carried out on glass fibre composite laminates, made up of regular aircraft grade epoxy (GFRP) and shape memory polymer (GF-SMP). Under various impact loading intensities ...A low velocity impact response study has been carried out on glass fibre composite laminates, made up of regular aircraft grade epoxy (GFRP) and shape memory polymer (GF-SMP). Under various impact loading intensities (4J, 6J, 12J), the responses are measured by a network of PZT (Lead Zirconate Titanate) sensors. A signal analysis methodology is subsequently developed to process the very high frequency (60 MHz) sampled data. In two frequency bands, namely 0 - 2000 Hz and 0 - 100 KHz, the results are examined and the transient dynamic behaviours of the composite laminates are evaluated. It is observed that both the laminates have generated the high frequency structural waves (0 - 100 KHz), which can be exploited to examine the BVID. However, GF-SMP laminate has shown some advantage in terms of energy dissipation in the structural frequency band (<2000 Hz). Further, the GF-SMP laminate has demonstrated its capability to generate very high frequency structural waves, which could carry the damage information like BVID due to impact event to nearby sensors for impact event monitoring and health assessment.展开更多
文摘Structural health monitoring(SHM)is a process for determination of presence,location,severity of damages and remaining life of the infrastructures.SHM is widely applied in aerospace,mechanical and civil engineering sys-tems to assess the conditions of structures to improve the operation,safety,serviceability and reliability,respec-tively.There are various SHM techniques for monitoring the health of structures such as global response based and local techniques.Damages occur in the structures due to its inability to withstand intended design loadings,physical environment and chemical environment.Therefore,damage identification is necessary to improve the durability of the structures for protection against catastrophic failure.The research paper is focused on elec-tro-mechanical impedance(EMI)technique which is one of the techniques based on smart materials.The smart materials are utilized for monitoring the health of the structures.These are used for damage determination and its quantification for the interrogated structures.Variation in admittance or impedance signature shows the existence of damage in the structures.Furthermore,the different statistical methods viz.,root mean square deviation(RMSD),mean absolute percentage deviation(MAPD),covariance(Cov),and correlation coefficient(CC)are used for the quantification of damage.Smart material such as piezoelectric materials,its properties and applica-tions are also considered.In this paper,the implementation of EMI technique based on different recent advances in smart materials and their appropriateness have been described.Subsequently,the reviewed investigations are significant for the monitoring of real-life infrastructures.The presented paper is the compact state-of-the-art for EMI technique which is used for SHM.This examination will be valuable to infrastructural health monitoring and engineering applications in respect to innovative research directions.
文摘A low velocity impact response study has been carried out on glass fibre composite laminates, made up of regular aircraft grade epoxy (GFRP) and shape memory polymer (GF-SMP). Under various impact loading intensities (4J, 6J, 12J), the responses are measured by a network of PZT (Lead Zirconate Titanate) sensors. A signal analysis methodology is subsequently developed to process the very high frequency (60 MHz) sampled data. In two frequency bands, namely 0 - 2000 Hz and 0 - 100 KHz, the results are examined and the transient dynamic behaviours of the composite laminates are evaluated. It is observed that both the laminates have generated the high frequency structural waves (0 - 100 KHz), which can be exploited to examine the BVID. However, GF-SMP laminate has shown some advantage in terms of energy dissipation in the structural frequency band (<2000 Hz). Further, the GF-SMP laminate has demonstrated its capability to generate very high frequency structural waves, which could carry the damage information like BVID due to impact event to nearby sensors for impact event monitoring and health assessment.