Compared with the traditional liquid–liquid extraction method,solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience,free of organic solvents,and fully expos...Compared with the traditional liquid–liquid extraction method,solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience,free of organic solvents,and fully exposed activity.In this study,P_(2)O_(4)(di-2-ethylhexyl phosphoric acid)was chemically modified by using UiO-66 to form the solid-phase extraction agent P_(2)O_(4)-UiO-66-MOFs(di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks)to adsorb In(Ⅲ).The results show that the Zr of UiO-66 bonds with the P-OH of P_(2)O_(4) to form a composite P_(2)O_(4)-UiO-66-MOF,which was confirmed by X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FT-IR).The adsorption process of indium on P_(2)O_(4)-UiO-66-MOFs followed pseudo first-order kinetics,and the adsorption isotherms fit the Langmuir adsorption isotherm model.The adsorption capabilities can reach 192.8 mg/g.After five consecutive cycles of adsorption-desorption-regeneration,the indium adsorption capacity by P_(2)O_(4)-UiO-66-MOFs remained above 99%.The adsorption mechanism analysis showed that the P=O and P-OH of P_(2)O_(4) molecules coated on the surface of P_(2)O_(4)-UiO-66-MOFs participated in the adsorption reaction of indium.In this paper,the extractant P_(2)O_(4) was modified into solid P_(2)O_(4)-UiO-66-MOFs for the first time.This work provides a new idea for the development of solid-phase extractants for the recovery of indium.展开更多
基金supported by the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(No.XDA23030302)the Key Programs of the Chinese Academy of Sciences(No.KFZD-SW-315)the Start-Up Foundation from Huaqiao University(No.20BS109).
文摘Compared with the traditional liquid–liquid extraction method,solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience,free of organic solvents,and fully exposed activity.In this study,P_(2)O_(4)(di-2-ethylhexyl phosphoric acid)was chemically modified by using UiO-66 to form the solid-phase extraction agent P_(2)O_(4)-UiO-66-MOFs(di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks)to adsorb In(Ⅲ).The results show that the Zr of UiO-66 bonds with the P-OH of P_(2)O_(4) to form a composite P_(2)O_(4)-UiO-66-MOF,which was confirmed by X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FT-IR).The adsorption process of indium on P_(2)O_(4)-UiO-66-MOFs followed pseudo first-order kinetics,and the adsorption isotherms fit the Langmuir adsorption isotherm model.The adsorption capabilities can reach 192.8 mg/g.After five consecutive cycles of adsorption-desorption-regeneration,the indium adsorption capacity by P_(2)O_(4)-UiO-66-MOFs remained above 99%.The adsorption mechanism analysis showed that the P=O and P-OH of P_(2)O_(4) molecules coated on the surface of P_(2)O_(4)-UiO-66-MOFs participated in the adsorption reaction of indium.In this paper,the extractant P_(2)O_(4) was modified into solid P_(2)O_(4)-UiO-66-MOFs for the first time.This work provides a new idea for the development of solid-phase extractants for the recovery of indium.