针对高放废液硼硅酸盐玻璃固化体易析出辉石晶相的问题,本文采用P_(2)O_(5)部分替代硼硅酸盐基础玻璃配方中的MgO和CaO,研究了P_(2)O_(5)掺量(质量分数为0~8%)对玻璃固化体析晶和抗浸出性能的影响。结果表明,当P_(2)O_(5)掺量为0~3%时,...针对高放废液硼硅酸盐玻璃固化体易析出辉石晶相的问题,本文采用P_(2)O_(5)部分替代硼硅酸盐基础玻璃配方中的MgO和CaO,研究了P_(2)O_(5)掺量(质量分数为0~8%)对玻璃固化体析晶和抗浸出性能的影响。结果表明,当P_(2)O_(5)掺量为0~3%时,样品为无定形态,在850℃热处理6 h后,P_(2)O_(5)掺量为0~2%的样品主要析出辉石晶相,而P_(2)O_(5)掺量为3%的样品析出了少量硅酸钙晶相,辉石晶相基本消失;当P_(2)O_(5)掺量高于3%时,样品析出球形Na_(3)Ca_(6)(PO_(4))_(5)晶体,且析晶度随P_(2)O_(5)掺量的增加而升高。29 Si MAS NMR和^(11)B MAS NMR分析表明,随着P_(2)O_(5)掺量的增加,玻璃网络结构中Q^(3)、Q^(4)和BO_(3)结构单元含量逐渐增加。静态浸泡法(MCC-1)试验结果表明,样品的抗浸出性能随P_(2)O_(5)掺量的增加而逐渐提高,其中P_(2)O_(5)掺量为3%的样品浸泡28 d后,Si、B、Na和Cs元素的归一化浸出率分别为0.508、0.468、0.533、0.280 g/(m^(2)·d)。展开更多
目的:研究不同含量P_(2)O_(5)替代SiO对生物活性玻璃的力学性能及生物活性的影响。方法:应用高温熔融法烧制各组分基础玻璃,P_(2)O_(5)含量分别为0wt%、1wt%、3wt%、6wt%、9wt%、12wt%。以聚氨酯海绵为模板,有机泡沫浸渍法制作多孔生物...目的:研究不同含量P_(2)O_(5)替代SiO对生物活性玻璃的力学性能及生物活性的影响。方法:应用高温熔融法烧制各组分基础玻璃,P_(2)O_(5)含量分别为0wt%、1wt%、3wt%、6wt%、9wt%、12wt%。以聚氨酯海绵为模板,有机泡沫浸渍法制作多孔生物活性玻璃支架。万能力学试验机单轴压缩和三点弯曲法测试支架的力学性能,标准模拟体液(simulated body fluid,SBF)浸泡计算质量损失百分比及扫描电镜(scanning electron microscope,SEM)观察、X线衍射分析(X-ray diffraction,XRD)观测生物活性。结果:(1)五组多孔支架的抗压强度及抗弯强度测试结果显示,除P_(2)O_(5)含量为0wt%和1wt%两组无显著差异外,随P_(2)O_(5)含量增高材料的力学性能逐渐增强,但当P_(2)O_(5)含量达到12wt%时支架无法烧制成型。(2)五组多孔支架浸泡实验结果表示,高磷含量组材料降解性能强于低磷含量组。且随着浸泡时间延长,除P_(2)O_(5)含量为0wt%和1wt%两组无显著差异外,其余各组之间降解性能有显著差异。(3)在SBF中浸泡后SEM及XRD检测发现,P_(2)O_(5)含量为0wt%和1wt%两组无体外矿化活性,其余各组有矿化活性,且随P_(2)O_(5)含量增高材料体外矿化活性逐渐增强。结论:(1)添加一定量的P_(2)O_(5)可以显著增强生物活性玻璃的力学性能,但含量达到12wt%时支架无法成型;(2)P_(2)O_(5)可以显著增强生物活性玻璃的降解性能及体外矿化活性。展开更多
Let G be a graph.We useχ(G)andω(G)to denote the chromatic number and clique number of G respectively.A P_(5)is a path on 5 vertices,and an HVN is a K_(4)together with one more vertex which is adjacent to exactly two...Let G be a graph.We useχ(G)andω(G)to denote the chromatic number and clique number of G respectively.A P_(5)is a path on 5 vertices,and an HVN is a K_(4)together with one more vertex which is adjacent to exactly two vertices of K_(4).Combining with some known result,in this paper we show that if G is(P_(5),HVN)-free,thenχ(G)≤max{min{16,ω(G)+3},ω(G)+1}.This upper bound is almost sharp.展开更多
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,wor...The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,working temperature,high energy density,and packaging,ASSLBs can develop an ideal energy storage system for modern electric vehicles(EVs).A solid electrolyte(SE)model must have an economical synthesis approach,exhibit electrochemical and chemical stability,high ionic conductivity,and low interfacial resistance.Owing to its highest conductivity of 17 mS·cm^(-1),and deformability,the sulfide-based Li_(7)P_(3)S_(11) solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs.Herein,we present a current glimpse of the progress of synthetic procedures,structural aspects,and ionic conductivity improvement strategies.Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques.The chemical stability of Li_(7)P_(3)S_(11) could be enhanced via oxide doping,and hard and soft acid/base(HSAB)concepts are also discussed.The issues to be undertaken for designing the ideal solid electrolytes,interfacial challenges,and high energy density have been discoursed.This review aims to provide a bird’s eye view of the recent development of Li_(7)P_(3)S_(11)-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density allsolid-state lithium batteries.展开更多
文摘针对高放废液硼硅酸盐玻璃固化体易析出辉石晶相的问题,本文采用P_(2)O_(5)部分替代硼硅酸盐基础玻璃配方中的MgO和CaO,研究了P_(2)O_(5)掺量(质量分数为0~8%)对玻璃固化体析晶和抗浸出性能的影响。结果表明,当P_(2)O_(5)掺量为0~3%时,样品为无定形态,在850℃热处理6 h后,P_(2)O_(5)掺量为0~2%的样品主要析出辉石晶相,而P_(2)O_(5)掺量为3%的样品析出了少量硅酸钙晶相,辉石晶相基本消失;当P_(2)O_(5)掺量高于3%时,样品析出球形Na_(3)Ca_(6)(PO_(4))_(5)晶体,且析晶度随P_(2)O_(5)掺量的增加而升高。29 Si MAS NMR和^(11)B MAS NMR分析表明,随着P_(2)O_(5)掺量的增加,玻璃网络结构中Q^(3)、Q^(4)和BO_(3)结构单元含量逐渐增加。静态浸泡法(MCC-1)试验结果表明,样品的抗浸出性能随P_(2)O_(5)掺量的增加而逐渐提高,其中P_(2)O_(5)掺量为3%的样品浸泡28 d后,Si、B、Na和Cs元素的归一化浸出率分别为0.508、0.468、0.533、0.280 g/(m^(2)·d)。
文摘目的:研究不同含量P_(2)O_(5)替代SiO对生物活性玻璃的力学性能及生物活性的影响。方法:应用高温熔融法烧制各组分基础玻璃,P_(2)O_(5)含量分别为0wt%、1wt%、3wt%、6wt%、9wt%、12wt%。以聚氨酯海绵为模板,有机泡沫浸渍法制作多孔生物活性玻璃支架。万能力学试验机单轴压缩和三点弯曲法测试支架的力学性能,标准模拟体液(simulated body fluid,SBF)浸泡计算质量损失百分比及扫描电镜(scanning electron microscope,SEM)观察、X线衍射分析(X-ray diffraction,XRD)观测生物活性。结果:(1)五组多孔支架的抗压强度及抗弯强度测试结果显示,除P_(2)O_(5)含量为0wt%和1wt%两组无显著差异外,随P_(2)O_(5)含量增高材料的力学性能逐渐增强,但当P_(2)O_(5)含量达到12wt%时支架无法烧制成型。(2)五组多孔支架浸泡实验结果表示,高磷含量组材料降解性能强于低磷含量组。且随着浸泡时间延长,除P_(2)O_(5)含量为0wt%和1wt%两组无显著差异外,其余各组之间降解性能有显著差异。(3)在SBF中浸泡后SEM及XRD检测发现,P_(2)O_(5)含量为0wt%和1wt%两组无体外矿化活性,其余各组有矿化活性,且随P_(2)O_(5)含量增高材料体外矿化活性逐渐增强。结论:(1)添加一定量的P_(2)O_(5)可以显著增强生物活性玻璃的力学性能,但含量达到12wt%时支架无法成型;(2)P_(2)O_(5)可以显著增强生物活性玻璃的降解性能及体外矿化活性。
基金supported by the National Natural Science Foundation of China(No.12101117)Natural Science Foundation of Jiangsu Province(No.BK20200344)。
文摘Let G be a graph.We useχ(G)andω(G)to denote the chromatic number and clique number of G respectively.A P_(5)is a path on 5 vertices,and an HVN is a K_(4)together with one more vertex which is adjacent to exactly two vertices of K_(4).Combining with some known result,in this paper we show that if G is(P_(5),HVN)-free,thenχ(G)≤max{min{16,ω(G)+3},ω(G)+1}.This upper bound is almost sharp.
基金the National Natural Science Foundation of China(51772030,21203008,21975025)the Natural Science Foundation of Beijing(2172051)+1 种基金Beijing Outstanding Young Scientists Program(BJJWZYJH01201910007023)the State Key Laboratory funding by the project for Modification of Chemical Fibers and Polymer Materials,Donghou University.
文摘The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,working temperature,high energy density,and packaging,ASSLBs can develop an ideal energy storage system for modern electric vehicles(EVs).A solid electrolyte(SE)model must have an economical synthesis approach,exhibit electrochemical and chemical stability,high ionic conductivity,and low interfacial resistance.Owing to its highest conductivity of 17 mS·cm^(-1),and deformability,the sulfide-based Li_(7)P_(3)S_(11) solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs.Herein,we present a current glimpse of the progress of synthetic procedures,structural aspects,and ionic conductivity improvement strategies.Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques.The chemical stability of Li_(7)P_(3)S_(11) could be enhanced via oxide doping,and hard and soft acid/base(HSAB)concepts are also discussed.The issues to be undertaken for designing the ideal solid electrolytes,interfacial challenges,and high energy density have been discoursed.This review aims to provide a bird’s eye view of the recent development of Li_(7)P_(3)S_(11)-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density allsolid-state lithium batteries.