Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di...Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries.展开更多
Objective:To explore the value of using the venous-arterial carbon dioxide partial pressure difference and the arterial-venous oxygen content difference ratio(ΔP_(CO2)/Ca-v_(O2))as targets to guide early tissue hypop...Objective:To explore the value of using the venous-arterial carbon dioxide partial pressure difference and the arterial-venous oxygen content difference ratio(ΔP_(CO2)/Ca-v_(O2))as targets to guide early tissue hypoperfusion in sepsis in plateau areas.Methods:90 sepsis patients admitted to the Third People’s Hospital of Xining and Golmud People’s Hospital from June 2017 to December 2022 were selected as the research subjects,and they were divided into the Scv_(O2)(central venous oxygen saturation)group and theΔP_(CO2)/Ca-v_(O2)group,with 45 cases in each group.The two groups were treated with early shock resuscitation according to different protocols.The hemodynamic characteristics of the two groups of patients before and after resuscitation were observed,and the volume responsiveness was evaluated.The ROC(receiver operating characteristic)curve was used to analyze the significance ofΔP_(CO2)/Ca-v_(O2),Scv_(O2),lactate,lactate clearance,and urine output in evaluating patient prognosis and the correlation betweenΔP_(CO2)/Ca-v_(O2)and the above indicators was explored.Results:Compared with before resuscitation,after fluid resuscitation,the heart rate(HR),mean arterial pressure(MAP),central venous pressure(CVP),cardiac index(CI),lactate,lactate clearance rate,and urine output of the two groups of patients were significantly improved(P<0.05);in terms of therapeutic effect,the 28-day mortality rate,6-hour fluid balance,and lactic acid clearance of theΔP_(CO2)/Ca-v_(O2)group were better than the Scv_(O2)group.The ROC characteristic curve showed that theΔP_(CO2)/Ca-v_(O2)value can effectively predict the prognosis of patients(AUC=0.907,sensitivity was 97%,specificity was 72.4%,and critical value was 1.84).ΔP_(CO2)/Ca-v_(O2)significantly correlated with Scv_(O2),lactic acid,and lactic acid clearance rate.Conclusion:TheΔP_(CO2)/Ca-v_(O2)value can be used to guide fluid resuscitation in early hypoperfusion in sepsis in plateau areas,improve patients’hemodynamics,reduce lactate indicators,and increase urine output.ΔP_(CO2)/Ca-v_(O2)level>1.84 can effectively improve patient prognosis.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金Financial supports from the National Natural Science Foundation of China(22265018 and 21961019)the Key Project of Natural Science Foundation of Jiangxi Province(20232ACB204010)。
文摘Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries.
基金2017 Xining Citizens’Biotechnology Plan Project(Project number:2017-K-15)。
文摘Objective:To explore the value of using the venous-arterial carbon dioxide partial pressure difference and the arterial-venous oxygen content difference ratio(ΔP_(CO2)/Ca-v_(O2))as targets to guide early tissue hypoperfusion in sepsis in plateau areas.Methods:90 sepsis patients admitted to the Third People’s Hospital of Xining and Golmud People’s Hospital from June 2017 to December 2022 were selected as the research subjects,and they were divided into the Scv_(O2)(central venous oxygen saturation)group and theΔP_(CO2)/Ca-v_(O2)group,with 45 cases in each group.The two groups were treated with early shock resuscitation according to different protocols.The hemodynamic characteristics of the two groups of patients before and after resuscitation were observed,and the volume responsiveness was evaluated.The ROC(receiver operating characteristic)curve was used to analyze the significance ofΔP_(CO2)/Ca-v_(O2),Scv_(O2),lactate,lactate clearance,and urine output in evaluating patient prognosis and the correlation betweenΔP_(CO2)/Ca-v_(O2)and the above indicators was explored.Results:Compared with before resuscitation,after fluid resuscitation,the heart rate(HR),mean arterial pressure(MAP),central venous pressure(CVP),cardiac index(CI),lactate,lactate clearance rate,and urine output of the two groups of patients were significantly improved(P<0.05);in terms of therapeutic effect,the 28-day mortality rate,6-hour fluid balance,and lactic acid clearance of theΔP_(CO2)/Ca-v_(O2)group were better than the Scv_(O2)group.The ROC characteristic curve showed that theΔP_(CO2)/Ca-v_(O2)value can effectively predict the prognosis of patients(AUC=0.907,sensitivity was 97%,specificity was 72.4%,and critical value was 1.84).ΔP_(CO2)/Ca-v_(O2)significantly correlated with Scv_(O2),lactic acid,and lactic acid clearance rate.Conclusion:TheΔP_(CO2)/Ca-v_(O2)value can be used to guide fluid resuscitation in early hypoperfusion in sepsis in plateau areas,improve patients’hemodynamics,reduce lactate indicators,and increase urine output.ΔP_(CO2)/Ca-v_(O2)level>1.84 can effectively improve patient prognosis.
基金supported by Guizhou Provincial Science and Technology Foundation,China(No.[2019]1229)the National Natural Science Foundation of China(Nos.21361007,51776046)。
文摘通过高温固相技术合成Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)上转换荧光粉。XRD结果表明,合成样品是空间群为P21/n的单斜结构的La_(7)P_(3)O_(18)晶体和少量La PO4晶体的混合物。紫外可见漫反射光谱结果证实La_(7)P_(3)O_(18)晶体是一种光学带隙为4.10 e V的间接半导体。经980 nm激光激发,Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)荧光粉发射出Ho^(3+)离子特征的蓝色(486 nm)、绿色(550 nm)和红色(661 nm)特征峰,其中,661 nm处发射峰在样品上转换发光光谱中占主导地位。此外,随着Ho^(3+)和Yb^(3+)掺杂量的增加,样品上转换发光强度先增大后减小。当Ho^(3+)和Yb^(3+)的掺杂量分别达到1%和10%(摩尔分数)时,样品出现浓度猝灭现象,其机制为电四极-电四极相互作用。泵浦功率和发光强度关系表明,样品的绿光和红光发射均源于双光子吸收过程激发。Ho^(3+)和Yb^(3+)共掺杂La_(7)P_(3)O_(18)晶体上转换发光色坐标位于橙红色区域。