AIM To investigate the effects of a water extract of Hwangryunhaedok-tang(HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal(ICCs).METHODS We dissociated ICCs from small intestines and cultured. IC...AIM To investigate the effects of a water extract of Hwangryunhaedok-tang(HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal(ICCs).METHODS We dissociated ICCs from small intestines and cultured. ICCs were immunologically identified using an antic-kit antibody. We used the whole-cell patch-clamp configuration to record the pacemaker potentials generated by cultured ICCs under the current clamp mode(I = 0). All experiments were performed at 30 ℃-32 ℃RESULTS HHTE dose-dependently depolarized ICC pacemaker potentials. Pretreatment with a 5-HT_3 receptor anta-gonist(Y25130) or a 5-HT_4 receptor antagonist(RS39604) blocked HHTE-induced pacemaker potential depolarizations, whereas pretreatment with a 5-HT7 receptor antagonist(SB269970) did not. Intracellular GDPβS inhibited HHTE-induced pacemaker potential depolarization and pretreatment with a Ca^(2+)-free solution or thapsigargin abolished the pacemaker potentials. In the presence of a Ca^(2+)-free solution or thapsigargin, HHTE did not depolarize ICC pacemaker potentials. In addition, HHTE-induced pacemaker potential depolarization was unaffected by a PKC inhibitor(calphostin C) or a Rho kinase inhibitor(Y27632). Of the four ingredients of HHT, Coptidis Rhizoma and Gardeniae Fructus more effectively inhibited pacemaker potential depolarization.CONCLUSION These results suggest that HHTE dose-dependently depolarizes ICC pacemaker potentials through 5-HT_3 and 5-HT_4 receptors via external and internal Ca^(2+) regulation and via G protein-, PKC-and Rho kinase-independent pathways.展开更多
基金Supported by the National Research Foundation of Korea Grant funded by the Korea Government(MSIP),No.2014R1A5A2009936
文摘AIM To investigate the effects of a water extract of Hwangryunhaedok-tang(HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal(ICCs).METHODS We dissociated ICCs from small intestines and cultured. ICCs were immunologically identified using an antic-kit antibody. We used the whole-cell patch-clamp configuration to record the pacemaker potentials generated by cultured ICCs under the current clamp mode(I = 0). All experiments were performed at 30 ℃-32 ℃RESULTS HHTE dose-dependently depolarized ICC pacemaker potentials. Pretreatment with a 5-HT_3 receptor anta-gonist(Y25130) or a 5-HT_4 receptor antagonist(RS39604) blocked HHTE-induced pacemaker potential depolarizations, whereas pretreatment with a 5-HT7 receptor antagonist(SB269970) did not. Intracellular GDPβS inhibited HHTE-induced pacemaker potential depolarization and pretreatment with a Ca^(2+)-free solution or thapsigargin abolished the pacemaker potentials. In the presence of a Ca^(2+)-free solution or thapsigargin, HHTE did not depolarize ICC pacemaker potentials. In addition, HHTE-induced pacemaker potential depolarization was unaffected by a PKC inhibitor(calphostin C) or a Rho kinase inhibitor(Y27632). Of the four ingredients of HHT, Coptidis Rhizoma and Gardeniae Fructus more effectively inhibited pacemaker potential depolarization.CONCLUSION These results suggest that HHTE dose-dependently depolarizes ICC pacemaker potentials through 5-HT_3 and 5-HT_4 receptors via external and internal Ca^(2+) regulation and via G protein-, PKC-and Rho kinase-independent pathways.