Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacifi...Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.展开更多
目的研究芍药苷-6-氧-苯磺酸酯(CP-25)通过抑制GRK2活性对骨关节炎(osteoarthritis,OA)小鼠膝关节软骨的保护作用。方法内侧半月板失稳(destabilization of the medial meniscus,DMM)手术诱导构建小鼠骨关节炎模型,实验分为假手术组、...目的研究芍药苷-6-氧-苯磺酸酯(CP-25)通过抑制GRK2活性对骨关节炎(osteoarthritis,OA)小鼠膝关节软骨的保护作用。方法内侧半月板失稳(destabilization of the medial meniscus,DMM)手术诱导构建小鼠骨关节炎模型,实验分为假手术组、模型组、CP-25给药组和帕罗西汀给药组。术后开始灌胃给药。给药12周处死动物,Micro-CT成像观察膝关节软骨退变、骨重塑异常等情况,番红固绿染色观察小鼠关节组织病理,免疫组化、免疫荧光检测软骨组织相关分子表达水平的影响。Western blot检测CP-25用药后软骨细胞的膜蛋白及总蛋白表达水平。结果模型小鼠关节软骨严重退变。CP-25可显著降低关节软骨骨赘数量及软骨下板厚度,促进软骨基质再生,减少软骨基质降解蛋白表达,对膝关节软骨有明显的保护作用。免疫组化和免疫荧光结果显示,CP-25治疗可显著降低膝关节组织中GRK2、ADAMTS5、MMP13的表达,并且升高膝关节组织中ColⅡ、Aggrecan表达。体外实验结果表明,CP-25给药可以显著降低GRK2的膜蛋白及总蛋白表达水平,升高EP4膜蛋白水平,降低MMP13水平。结论CP-25给药可显著促进OA小鼠关节软骨基质再生,减少软骨基质降解,对OA具有治疗作用,其机制与抑制GRK2介导的软骨基质代谢有关。展开更多
There are substantial spatial variations in the relationships between catch-per-unit-effort(CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distributi...There are substantial spatial variations in the relationships between catch-per-unit-effort(CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distribution of CPUE of the neon flying squid, Ommastrephes bartramii, in the Northwest Pacific from July to November during 2004–2013, and analyzes the relationships with oceanographic conditions using a generalized additive model(GAM) and geographically weighted regression(GWR) model. The results show that most of the squids were harvested in waters with sea surface temperature(SST) between 7.6 and 24.6℃, chlorophyll-a(Chl-a) concentration below 1.0 mgm^(-3), sea surface salinity(SSS) between 32.7 and 34.6, and sea surface height(SSH) between-12.8 and 28.4 cm. The monthly spatial distribution patterns of O. bartramii predicted using GAM and GWR models are similar to observed patterns for all months. There are notable variations in the local coefficients of GWR, indicating the presence of spatial non-stationarity in the relationship between O. bartramii CPUE and oceanographic conditions. The statistical results show that there were nearly equal positive and negative coefficients for Chl-a, more positive than negative coefficients for SST, and more negative than positive coefficients for SSS and SSH. The overall accuracies of the hot spots predicted by GWR exceed 60%(except for October), indicating a good performance of this model and its improvement over GAM. Our study provides a better understanding of the ecological dynamics of O. bartramii CPUE and makes it possible to use GWR to study the spatially nonstationary characteristics of other pelagic species.展开更多
基金Supported by the Program for New Century Excellent Talents in University (No.NCET-06-0437)the National High Technology Research and Development Program of China (863 Program) (No.2007AA092201+2 种基金2007AA092202)Shanghai Leading Academic Discipline Project (No.S30702)Doctorship Fund of Shanghai Ocean University (No.06-326)
文摘Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.
文摘目的研究芍药苷-6-氧-苯磺酸酯(CP-25)通过抑制GRK2活性对骨关节炎(osteoarthritis,OA)小鼠膝关节软骨的保护作用。方法内侧半月板失稳(destabilization of the medial meniscus,DMM)手术诱导构建小鼠骨关节炎模型,实验分为假手术组、模型组、CP-25给药组和帕罗西汀给药组。术后开始灌胃给药。给药12周处死动物,Micro-CT成像观察膝关节软骨退变、骨重塑异常等情况,番红固绿染色观察小鼠关节组织病理,免疫组化、免疫荧光检测软骨组织相关分子表达水平的影响。Western blot检测CP-25用药后软骨细胞的膜蛋白及总蛋白表达水平。结果模型小鼠关节软骨严重退变。CP-25可显著降低关节软骨骨赘数量及软骨下板厚度,促进软骨基质再生,减少软骨基质降解蛋白表达,对膝关节软骨有明显的保护作用。免疫组化和免疫荧光结果显示,CP-25治疗可显著降低膝关节组织中GRK2、ADAMTS5、MMP13的表达,并且升高膝关节组织中ColⅡ、Aggrecan表达。体外实验结果表明,CP-25给药可以显著降低GRK2的膜蛋白及总蛋白表达水平,升高EP4膜蛋白水平,降低MMP13水平。结论CP-25给药可显著促进OA小鼠关节软骨基质再生,减少软骨基质降解,对OA具有治疗作用,其机制与抑制GRK2介导的软骨基质代谢有关。
基金financially supported by the National Natural Science Foundation of China (No. 41406146)Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China (No. 20171A02)
文摘There are substantial spatial variations in the relationships between catch-per-unit-effort(CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distribution of CPUE of the neon flying squid, Ommastrephes bartramii, in the Northwest Pacific from July to November during 2004–2013, and analyzes the relationships with oceanographic conditions using a generalized additive model(GAM) and geographically weighted regression(GWR) model. The results show that most of the squids were harvested in waters with sea surface temperature(SST) between 7.6 and 24.6℃, chlorophyll-a(Chl-a) concentration below 1.0 mgm^(-3), sea surface salinity(SSS) between 32.7 and 34.6, and sea surface height(SSH) between-12.8 and 28.4 cm. The monthly spatial distribution patterns of O. bartramii predicted using GAM and GWR models are similar to observed patterns for all months. There are notable variations in the local coefficients of GWR, indicating the presence of spatial non-stationarity in the relationship between O. bartramii CPUE and oceanographic conditions. The statistical results show that there were nearly equal positive and negative coefficients for Chl-a, more positive than negative coefficients for SST, and more negative than positive coefficients for SSS and SSH. The overall accuracies of the hot spots predicted by GWR exceed 60%(except for October), indicating a good performance of this model and its improvement over GAM. Our study provides a better understanding of the ecological dynamics of O. bartramii CPUE and makes it possible to use GWR to study the spatially nonstationary characteristics of other pelagic species.